
For the best experience, open this PDF portfolio in
Acrobat 9 or Adobe Reader 9, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

Main Index
A collection of JavaScript code snippets organized by function and fully indexed; for more information,
click the About link below. The samples are separated into two general functional categories: JavaScript
for forms, and JavaScript for documents. The list of samples can be accessed using the links below. This
document also contains short introductory sections on creating JavaScript actions associated with
events, and on testing JavaScript in PDF documents.

July 15, 2008

 About Forms Documents Actions Testing Resources Index

Adobe Acrobat SDK

Common Tasks
JavaScript Collection

Documents
JavaScript samples for everything
except forms, security, or
collaboration.

Forms
JavaScript samples to help

create and manage Acrobat
forms.

Copyright 2004–2008 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in
hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to
the PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a
product trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,” or similar item refers to a
printing device, display device or item (respectively) that contains PostScript technology created or licensed by Adobe Systems
Incorporated and not to devices or items that purport to be merely compatible with the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Distiller, PostScript, the PostScript logo and Reader are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries.
PowerPC is a registered trademark of IBM Corporation in the United States. ActiveX, Microsoft, Windows, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. UNIX is a registered
trademark of The Open Group. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims
any and all warranties of merchantability, fitness for particular purposes, and noninfringement of third party rights.

Forms
3A C R O B A T C O M M O N T A S K S J AV A SC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

JavaScript for Forms
Date handling

Date timestamp: first time only 8
Gets today’s date as a one-time timestamp so it won’t be updated
each time the page is opened.

Date Parsing 8
Formats the current date using AFParseDateEx().

Displaying a localized date 8
Uses the util.printd method to display a localized date, including
for CJK language documents. [Acrobat 7 or higher]

Getting today’s date 9
Get today’s date and display it.

Calculations
Calculations: Turn calculations on/off 9
Turn off calculations to optimize performance.

Delay redrawing of appearance changes 9
Delays redrawing of all fields until all changes are completed.

Field Operations
Add/Remove a new field programmatically 10
Places a new form field on the specified page.

Add/Remove fields on multiple pages 10
Create or remove identical text fields on every page of a
document.

Changing field properties 11
Change any or all of the properties of a form field.

Color: defining a custom color 12
Define a custom RGB color for use, for example, as a form field
background color.

Check a check box field 12
Inspect whether a check box field has been checked.

Formatting a number in a form field 12
Shows how to format numbers in decimal, hex, and floating
formats as well as formatting the value as a string.

Formatting: removing zeros so field is blank 13
Removes zeros (0.00) in auto-calculated fields.

Hiding/un-hiding an existing field based on conditions 13
Hide or expose a field based on the state of a check box field.

Highlighting a single field 13
Highlight a single field for the On Focus event, and turn off the
highlighting for the On Blur event.

Highlight fields using a function 14
Create a function to highlight a field, to be called from multiple
fields.

Highlighting multiple fields using a for loop 14
Defines a Document Level JavaScript function that will highlight
any field that calls the function when the mouse cursor enters that
field. Code can be added to all fields by running a script from the
JavaScript console.

Locating fields and listing field names 15
List all form fields including their name, type, and page number.

Printing: Set field to print or not print 16
Code to control the print property of a field so the field will either
print or not print.

Print selected form pages 16
Print a selected range of form pages (for example, to exclude the

Forms
4A C R O B A T C O M M O N T A S K S J AV A SC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

instruction pages in a form document).

Rollover help
Display help text 16
Display help text for a field for the Mouse Enter event.

Search fields
Search for all fields with a specified prefix 17
Search/enumerate through all fields that begin with specified
string.

Set an action for a single field 17
Attaches an action to a single field.

Set an action for multiple fields 18
Execute code from the JavaScript console to attach an action to
multiple fields.

Form checking and resetting
Final field checks

Check fields before submitting 18
Check that all required fields were completed before the form is
submitted.

Resetting a form 19
Resets all fields, or specified fields, to their original default value.

Validation
Validate that number is in the correct range 20
Verify that entered value is in one of two ranges.

Verify that required entry was made 20
Check required fields for a valid entry.

Convert user input to uppercase characters 21
Converts lowercase characters typed by the user into uppercase
characters.

Restricting keystrokes to uppercase characters 21
Restrict keystrokes to Y (for Yes) or N (for No) .

Documents
5

A C R O B A T C O M M O N T A S K S J AV A SC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

JavaScript for Documents
Annotations

Add/remove annotations

Create an annotation 22
Illustrates how to create an annotation of type “Text”.

Remove an annotation 22
Removes an annotation.

Application Version
Version checking 22
Checks the version and type of the Acrobat application, and lists all
plug-ins.

Bookmarks
Create a new bookmark 23
Creates a new child bookmark at the specified location.

Add a child bookmark 23
Inserts a bookmark as a child of the bookmark in the previous
sample..

Remove a bookmark 23
Removes a bookmark and all children bookmarks from the
bookmark tree.

Document Operations
Create a new blank PDF document 23
Creates a new document in the Acrobat viewer.

Metadata: Get document metadata 24
Allows you to retrieve and display document metadata.

Open an existing document 24
Opens the document whose filename is specified as the string
argument.

Prompt user for a document to open 24
Executes the File Open menu item in Acrobat, which prompts the
user for a file to open.

Links
Add navigation links to a page 24
This sample adds navigational links at the bottom of each page in
the document.

Convert specified word to a weblink 25
Search for a word and create a weblink.

Convert URL text to live links 25
Convert all content that appears to be a URL into a web link.

Remove all links on a page 25
Removes all links on the current page.

Set an action for a link 26
Sets the specified JavaScript action for the Mouse Up trigger for
the link object.

Menu operations
Add a new menu item 26
Adds a new menu item and an associated action.

Execute menu item 27
Executes the menu item specified by the argument.

Hide a menu item 27
Hides a menu item so user won’t have access to that item.

List menu items 27
Display a list of menu items for the Acrobat application; for use
with methods that reference menu items.

6

Documents
A C R O B A T C O M M O N T A S K S J AV ASC R I P T C O L L E C T I O N A C R O B A T C O M M O N T A S K S J AV ASC R I P T C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Messages/Dialogs
Beep the user 28
Causes the system to play a sound to alert the user.

Prompt the user for a response 28
Prompt and get a response from the user.

Simple alert 28
Displays a message to the user.

Navigation
Add a pop-up menu for navigation 29
Creates a pop-up menu that can be triggered by any of a variety of
events.

Adding page numbers to a document 29
Adds page numbers to a document in the specified location, using
the specified font style.

Get the number of the current page 29
Gets the current page number.

Go to a specified page number 30
Sample code to go to a specific page number.

Go to first page 30
Sets the page being viewed to the first page (zero-based
numbering) in the document.

Go to next page 30
Increments the page being viewed to the next page.

Go to previous page 30
Navigates to the previous page of the document.

Go to last page 30
Sets the page being viewed to the last page in the document.

Go to another page: create a pop-up menu 30
Creates a pop-up menu which gives the user a choice of pages to
which to go. The script can be attached to a button.

Add navigational arrows on every page 31
Add navigational symbols to every page of a document for each
document in a selected set.

OCG (Optional Content Group)
Beep when OCG state changes 31
Execute a JavaScript after every state change for a give OCG.

Show all OCG objects on the currrent page 31
Make visible all OCG objects in a specified name family.

Hide all OCG objects on current page 32
Hide all OCG objects in a specified name family.

Lock OCG objects 32
Locks the OCG so its state cannot be toggled through the UI.

Toggle the state of OCG objects 32
Specifies whether an OCG object is hidden or not.

Page Operations
Insert new page 32
Inserts a new page based on the selected template and then
jumps to the new page.

Insert/Delete/Replace/Extract Pages 32
Executes a menu item to insert, delete, replace, or extract pages.
The user is prompted to specify the appropriate pages.

Printing
Get a list of printers as a combo box 33
Shows how to get a list of printers and display result as a combo
box.

7

Documents
A C R O B A T C O M M O N T A S K S J AV ASC R I P T C O L L E C T I O N A C R O B A T C O M M O N T A S K S J AV ASC R I P T C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Print page using printer selected in combo box 33
Code to print the current page using the printer selected by user
from the combo box presented in previous example.

Print only the current page 33
Sample code to print only the current page.

Print current page (no dialog) 33
Print the current page without the usual dialog.

Searching
A simple find operation 34
A alternative to the standard Acrobat search function; it can be
used to create customized searches.

Spell checking
Creating a menu item to spellcheck a document 34
Spellchecks a document and uses annotations to mark the
misspelled words. [Version 6.0 or higher]

Timing
Set countdown timer 35
Prompt the user for a time interval, and alert the user when that
time has elapsed.

Viewing

Viewing Mode

Go to fullscreen mode and start slide show 36
Switches the viewer to full screen mode and starts a slide show.

Setting zoom values

Change zoom value 36
Set the zoom to a percentage of full size.

Prompt for a zoom value 36
Ask the user for a zoom value and set the view to that value.

Pop-up menus for zooming 37
The following example creates a pop-up menu which might be
attached to a Mouse Up or Mouse Down action for a button field.

Watermarks
Adding a watermark from an external file 37
Add a watermark from an external PDF file to a selected range of
pages in the current document.

Adding a watermark from text 37
Add specified text to current document as a watermark.

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 8

 About Forms Documents Actions Testing Resources Index

JavaScript for Forms

Date handling

Acrobat reports and manipulates dates using the date
object data structure, but dates are displayed in form
fields as a string. Hence some conversion is required, as
shown in the following examples.

Date timestamp: first time only

Gets today’s date as a one-time timestamp so it won’t be
updated each time the page is opened.

The following code can be assigned as the Page Open
action for the desired page. It checks to see if the value of
the field has changed from its default value (usually it is
blank). If it is the default value, then it gets the date and
displays it as a string.

var today = new Date();
var td = this.getField("DateStamp");
// test if new value is the same as the
// default value, which was set to blank ("")
if (td.value == td.defaultValue) {
// if so, display formatted string in field
 this.getField("DateStamp").value =
 util.printd("dd mmmm, yyyy",today);
}

// change field to "Read-only"
this.getField("DateStamp").readonly = true;

Date Parsing

Formats the current date using AFParseDateEx().

The following sample uses AFParseDateEx() to check
the validity of the date and to display the resulting date
formatted as a string. The user is alerted as to whether
the parsing was successful or not. The code should be
entered as a custom validation script for the field.

if(event.value) {
var DateOK =

 AFParseDateEx(event.value,"mm/dd/yyyy");
if(DateOK != null) {

app.alert("date ok");
event.value = util.printd("mm/dd/yyyy",

 DateOK);
}
else
{

event.value = "";
app.alert("date not ok");

}
}

Displaying a localized date

Uses the util.printd method to display a localized date,
including for CJK language documents. [Acrobat 7 or
higher]

You can use the bXFAPicture parameter (optional,
Acrobat 7 or greater; see Acrobat JavaScript Scripting
Reference for more information) of the util.printd
method to display a localized version of dates and times.

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 9

 About Forms Documents Actions Testing Resources Index

It uses the XFA-Picture Clause format to provide extensive
support for localized dates and times for Chinese,
Chinese (Taiwan), Japanese, and Korean (CCJK) times and
dates. It is supported for both Acro Form and XFA
JavaScript.

The following is an example of util.printd being used
to display the result in the JavaScript console, but it could
also be used as an action for a page or document open
event, or just to display the date in any field:

// execute in console
console.println(
util.printd("EEE, 'the' D 'of' MMMM, YYYY",
 new Date(), true));

The result displayed in the console would be:

Tue, the 13 of July, 2004

The next example shows its use for localized output. The
script can be entered as a custom format script of a text
field. It gives the current date formatted for a Japanese
locale (the last parameter is the bXFAPicture boolean
set to true).

event.value = util.printd("date(ja){ggYY/M/
D}", new Date(), true)

Getting today’s date

Get today’s date and display it.

The following code can be attached to the Page Open
event for the page on which the date will appear:

var today = new Date();

var td = this.getField("DateField");
td.value = util.printd("dd mmmm, yyyy",today);

This code will get and display a new date every time the
page is opened. For a date timestamp that doesn’t
change once it has been set, see “Date timestamp: first
time only” on page 8.

Calculations

Calculations: Turn calculations on/off

Turn off calculations to optimize performance.

When a large number of fields are being checked or
updated, each change of a field value can trigger all fields
to be re-calculated, which can affect performance.
Setting the calculate property of the doc object to
false tells Acrobat not to execute the calculations until
they are turned on again.

To turn off calculations until ready:

this.calculate = false;

and to allow calculations to resume:

this.calculate = true;

Delay redrawing of appearance changes

Delays redrawing of all fields until all changes are
completed.

this.delay = true; // queue changes

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 10

 About Forms Documents Actions Testing Resources Index

When set to false, all fields will be redrawn. See also the
field.delay property in the Acrobat JavaScript
Scripting Reference.

Field Operations

Add/Remove a new field programmatically

Places a new form field on the specified page.

The following code, which can be executed from the
JavaScript console, adds a text field named “myField” to
the first page (zero-based) of the document. The field will
be filled with yellow, and have a medium weight border.

var aRect = [300, 660, 600, 700];
var f = this.addField("myField", "text", 0,
 aRect);
f.fillColor = color.yellow;
f.strokeColor = color.red;
f.lineWidth = 2; // medium line width

and to remove the field:

this.removeField("myField");

N OTE: You can add an action to the newly-created field
as shown in “Set an action for multiple fields” on
page 18.

Add/Remove fields on multiple pages

Create or remove identical text fields on every page of a
document.

The following code creates a field named “myField” on
every page of a document. It could be entered through
the JavaScript console, or in any other JavaScript code in
the document.

for (var p = 0; p < this.numPages; p++) {
var aRect = [300, 660, 600, 700];
var f = this.addField("myField", "text",

 p, aRect);
f.strokeColor = color.black;

 f.fillColor = color.yellow;
}

With the above script, all added fields will have the same
name, which means they will always all have the same
value. One way to give them different names is to append
the page number by changing the third line in the
example above to:

var f = this.addField("myField" + p,
 "text", p, aRect);

The result will be a new field on each page, named, for
example, myField0, myField1, etc.

N OTE: Also see “Add navigational arrows on every page”
on page 31 for another example of adding an
action to all pages in a document.

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 11

 About Forms Documents Actions Testing Resources Index

All of the added fields can be removed using the
following code (for the sequentially-named fields):

for (var p = 0; p < this.numPages; p++)
var f = this.removeField("myField" + p);

Changing field properties

Change any or all of the properties of a form field.

The following are examples of how to change the
properties for a field, for a variety of commonly used field
properties. For a complete list of properties and their
values, see the JavaScript for Acrobat API Reference.

IMPORTANT: All of the following code samples use the
variable f for the field object. So the
following statement must precede any of
the code samples:

var f = this.getField("MyField");

Alignment of a text field:

f.alignment = "center";

Background color:

f.fillColor = color.blue;

Current value:

// Set a variable to the field’s value
var v = f.value

Default value:

// Specify default value
f.defaultValue = "Enter your name here.";

Font:

f.textFont = font.Helv;

And for Acrobat 5.0 or higher, the PostScript® font name
can be used for any font:

f.textFont = "Arial,BoldMT";

The first font name example above shows the use of an
alias font name that is defined for a limited number of
core fonts as defined in the Acrobat font object. The
second example: Arial,BoldMT — shows the use of the
font family name and style. You can also use the
PostScript® font name, which you can see under the Fonts
tab of the Document Properties window (press Ctrl-d
when in Acrobat). For more details, see the JavaScript for
Acrobat API Reference, under the properties for the Field
object.

Font size:

f.textSize = 20;

Hide or display field:

f.display = display.noPrint;

Multiline field:

f.multiline = true;

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 12

 About Forms Documents Actions Testing Resources Index

Password hiding – using asterisks:

f.password = true;

Required field:

f.required = true;

Stroke Color:

f.strokeColor = color.yellow;

Stroke line width:

f.lineWidth = 3; // 3 = wide line

Color: defining a custom color

Define a custom RGB color for use, for example, as a form
field background color.

color.lightYellow = new Array
 ("RGB",1,0.99,0.8);

Check a check box field

Inspect whether a check box field has been checked.

JavaScript can be used to see if a check box field has been
checked by the user by inspecting the export value of
that field (specified in the “Field Properties” dialog box).

The following example contains code that toggles the
state of the check box field. It could be attached as the
Mouse Up action for a button field.

// Get named reference

var cB1 = this.getField("CheckBox1");

// check if export value is Yes
if (cB1.value == "Yes")

cB1.value = "No" // if checked, toggle it
else

cB1.value = "Yes" // toggle back again

Or, the code could be written to use the event object:

if (event.target.value == "Yes")
{do appropriate task}

Formatting a number in a form field

Shows how to format numbers in decimal, hex, and floating
formats as well as formatting the value as a string.

You can cut-and-paste the following script into the
JavaScript console, select the script, and press Enter. The
resulting formatting is shown below under “Output.” (The
“Math.PI” expression is a JavaScript constant equal to the
value of ).

var n = Math.PI * 100;

// Decimal format:
console.println(util.printf("Decimal format:
%d", n));

// Hex format:
console.println(util.printf("Hex format: %x",
n));

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 13

 About Forms Documents Actions Testing Resources Index

// Floating point format:
console.println(util.printf("Float format:
%.2f", n));

// String format:
console.println(util.printf("String format:
%s", n));

 Output:

Decimal format: 314
Hex format: 13A
Float format: 314.16
String format: 314.159265358979

Formatting: removing zeros so field is blank

Removes zeros (0.00) in auto-calculated fields.

Many times when form fields use predefined calculations,
the resulting value may be zero. It is usually not
desireable to display a value of “$0.00”. The solution is to
use JavaScript to calculate the field values, and to include
the following code in your calculations for each field:

if (event.value == 0)
event.value = "";

Hiding/un-hiding an existing field based on
conditions

Hide or expose a field based on the state of a check box field.

A field may need to be hidden or exposed based on
whether or not a check box is checked. The following
code could be used, for example, as a Mouse Up action
for the check box field. When the box is checked the
“textField1” field is displayed; when the box is
unchecked, the field is hidden.

// get name of text field to hide or not
var tF1 = this.getField("textField1")

// if box is checked, make text field visible
if (event.target.value == "Yes") {
 tF1.hidden = false
}
else {
 tF1.hidden = true
}

Highlighting a single field

Highlight a single field for the On Focus event, and turn off
the highlighting for the On Blur event.

The following code can be set as the action for a single
field (for example, “textField1”) that you want to highlight
for the On Focus event (user tabs into or clicks on the
field), and un-highlight at the On Blur event (when user
leaves the field.

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 14

 About Forms Documents Actions Testing Resources Index

N OTE: If you want highlighting for multiple fields, see
“Highlighting multiple fields using a for loop,”
below.

var myField = this.getField("textField1");
if(event.name == "Focus")
 myField.fillColor = color.blue;
else if(event.name == "Blur")
 myField.fillColor = color.transparent;

Highlight fields using a function

Create a function to highlight a field, to be called from
multiple fields.

The following example uses a Document JavaScript
function ChangeColor() to handle all highlighting
events. Then, you would add a ChangeColor() call to
each field you would like highlighting applied, for both
the On Focus and On Blur events. This function toggles
the color of the field, so it can be called for both events.

function ChangeColor() {
 var myField = event.target;
 if(event.name == "Focus") {
 myField.fillColor = color.blue;
 myField.borderColor = color.black;
 }
 else if (event.name == "Blur")
 myField.fillColor = color.transparent;
}

Highlighting multiple fields using a for loop

Defines a Document Level JavaScript function that will
highlight any field that calls the function when the mouse
cursor enters that field. Code can be added to all fields by
running a script from the JavaScript console.

The above example, “Highlighting a single field,” defines
the ChangeColor() function which will change the
color of a field as the user’s cursor enters or leaves a field
(the On Focus and On Blur events, respectively).

Select Tools > JavaScript > Document JavaScripts, and in
the resulting dialogue box enter a name and the
ChangeColor() function shown in the above section,
“Highlight fields using a function”.

Then, the following script can be run from the console to
assign the ChangeColor() function (defined in the
sample “Highlight fields using a functionon” on page 14)
as the On Focus action for each field in the form. Run the
following code from the JavaScript console:

// loop through all fields in document
for (var i = 0; i < this.numFields; i++) {
 // set the ChangeColor function as the
 // action for the field
 var f =
 this.getField(this.getNthFieldName(i));
 f.setAction("OnFocus", "ChangeColor();");
 f.setAction("OnBlur", "ChangeColor();");
}

The code will loop through all fields in the form and add
the highlighting code to each field. For fields to which

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 15

 About Forms Documents Actions Testing Resources Index

you don’t want the actions to apply (such as for a button
field), double-click them with the object selection tool to
get the Field Properties window; click the Action tab; and
then delete the attached script.

Locating fields and listing field names

List all form fields including their name, type, and page
number.

Sometimes a complicated form may have many fields
that are hard to find, or some fields may obscure other
fields, or the field names may be too long to display
clearly. The following script will output the names of all
fields, the type, and the page number, to the console:

console.clear();
console.show();
console.println("Page, Name, Type");
for (var i=0; i<this.numFields; i++) {
 fieldName = this.getNthFieldName(i);
 f = this.getField(fieldName);
 console.println(f.page+ ", " + f.name + ",
 " + f.type)
}

Another variation is the following script, which will place
the name of each field below the field, and allow you to
print the resulting form. The added field label is added in
a new field created by the script, so it is intended only as a
development tool to help identify fields.

This following script labels all fields in a form document;
the print statement arguments should be adjusted for
the pages yoou want to be printed.

// Define an array for field names
nameArray = new Array (this.numFields);

// Put all field names into an array
for (var i = 0; i<this.numFields; i++)
 nameArray[i] = this.getNthFieldName(i);
// loop through name array
for (i=0; i<nameArray.length; i++) {
 // get object for existing field
 var f = this.getField(nameArray[i]);
 // make a copy of rectangle coordinates
 var myRect = f.rect;
 var name = f.name;
 // Get length of field name
 var flength = f.name.length;
 // myRect[1] = f.rect[3];
 myRect[3] = f.rect[3] - 10;
 myRect[2] = f.rect[0] + (flength * 3);
 // make a new field just under old one
 f = this.addField("abyz" + i, "text",
 this.pageNum, myRect);
 f.value = name;
}
this.print(true, this.pageNum, this.pageNum);

In the above example, the field bounding box
coordinates are returned for rotated user space, and are
in this order: ulx (upper-left x), uly (upper-left y), lrx
(lower-right x), and lry (lower-right y), which is different
from bounding boxes for annotation rectangles.

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 16

 About Forms Documents Actions Testing Resources Index

Printing: Set field to print or not print

Code to control the print property of a field so the field will
either print or not print.

var f = this.getField("myField");
f.print = false;

N OTE: Most printing examples are in the JavaScript for
Documents section under “Printing” on page 33.

Print selected form pages

Print a selected range of form pages (for example, to exclude
the instruction pages in a form document).

Some forms consist of one or more pages of instructions
which don’t need to be printed. The following example
might be for a form where the first page contains only
instructions, and the second page contains the form and
a print button. Hence the page range parameters both
point to the second page:

this.print(false,this.pageNum,this.pageNum);

Rollover help

Two methods for providing rollover help include:
1) descriptive help text can be displayed; or 2) a default
text or value can be displayed. In both cases, the rollover
help text should be displayed for the Mouse Enter event,
and it can be removed for the Mouse Exit event.

The first example below shows how to display help text,
but it could also be used to display the default value by
using the defaultValue property of the field.

N OTE: Basic “rollover” highlighting of a form field is
shown in “Highlighting a single field” on page 13.

Display help text

Display help text for a field for the Mouse Enter event.

For a Mouse Enter event:

var f = this.getField("Text1");
f.value = "Enter full e-mail address"

And for the Mouse Exit event:

// Remove help text only if present
var f = this.getField("Text1")
f.value = "";

The problem with the above code is that it works fine
when the mouse enters and leaves the field, but when
the user clicks in the field to enter data, the help text is
not removed. Also, if the user did remove the help text
manually and then entered data, the next time the
mouse passed over the field, the user data would be
removed.

The following improved script checks field contents
before changes are made. It adds an On Focus event
(when the user tabs to, or clicks in, the field) to
distinguish when the user begins to enter data.

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 17

 About Forms Documents Actions Testing Resources Index

For the Mouse Enter event:

//Display help text only if field is blank
var f = this.getField("Text1")
if (f.value == "")
 f.value = "Enter full e-mail address";

For the Mouse Exit event:

// Remove field text but only if it is the
// text from the Mouse Enter event, otherwise
// user input could be deleted
var f = this.getField("Text1")
if (f.value == "Enter full e-mail address")
 f.value = "";

For the On Focus event:

// Reset field to blank only if
// help text is present
var f = this.getField("Text1")
if (f.value == "Enter full e-mail address")
 f.value = ""

Search fields

Search for all fields with a specified prefix

Search/enumerate through all fields that begin with
specified string.

The following code loops through all fields in the form
and displays field names that begin with (for example)
“txt”.

for (var i = 0; i < this.numFields; i++) {

 if (this.getNthFieldName(i).substring(0,3)
 == "txt")
 app.alert(this.getNthFieldName(i));

 // or to list in console window:
 // console.println(this.getNthFieldName(i))
}

The above code uses the JavaScript substring method. It
specifies the beginning index of the string (0) and the
length of the string it is trying to match (3) . The code can
be entered in the JavaScript console as means of locating
and potentially altering all fields with a given name
(using additional code), or it could be an action
associated with a button, or be used in any other script
associated with the form.

Set an action for a single field

Attaches an action to a single field.

The following code sets the function ChangeColor()
(defined on page 13) as the action for the field named
myField, for both the On Focus and On Blur events.

var f = this.getField("myField");
f.setAction("OnFocus", "ChangeColor();");
f.setAction("OnBlur", "ChangeColor();");

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 18

 About Forms Documents Actions Testing Resources Index

Set an action for multiple fields

Execute code from the JavaScript console to attach an
action to multiple fields.

A script to set an action for multiple fields is shown in
“Highlighting multiple fields using a for loop” on page 14.
The function call and the actions can be modified to suit
whatever is needed. The script adds the specified actions
to all fields in the document. Depending on the form, it
might be easier to add the actions to all fields using a for
loop, and then deleting by hand the actions for the fields
that do not need those actions.

Form checking and resetting

Final field checks

Check fields before submitting

Check that all required fields were completed before the
form is submitted.

The following code loops through all fields, allowing you
to verify, check, or validate each field before the form is
submitted. The code could be used, for example, as part
of the action for a “Submit” button.

for (var i=0; i<this.numFields; i++) {
 var strFieldName =
 this.getNthFieldName(i);
 var field = this.getField(strFieldName);

if (field.value == "") {

 // Add your tests here
 // Build a list of names and pages
 // to alert user

}
}

The following script checks all fields for a prefix of
“required.” (for example, required.username). It then
checks if an entry has been made in that field, and alerts
the user if no data has been entered.

for (var i=0; i<this.numFields; i++) {
 if (this.getNthFieldName(i).substring(0,8)
 == "required"){
 var f1 =
 this.getField(this.getNthFieldName(i));
 if (f1.value == "") {
 app.alert(this.getNthFieldName(i) + "
 is a required field; please enter
 data");
 f1.setFocus();}
 }
}

Another option would be to put the names of all required
fields in an array; in this example they are hard-coded in
the script. The user clicks a button and is alerted as to
which fields are blank. They then enter the data, and click
the button again until no error messages are displayed.

// Specify a list of required field names:
var requiredField = ["Text10", "Text11",
"Text12"];
// Loop through the array of field names:
for (var i=0; i<requiredField.length; i++){

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 19

 About Forms Documents Actions Testing Resources Index

 var f = this.getField(requiredField[i]);
 if (f.value == ""){
 app.alert("The " + requiredField[i] + "
field is required; please click OK on this
message; enter data; and then click this
button again until there are no error
messages")
 break;
 }
 else if(i == requiredField.length - 1) {
 app.alert("Thank you, all required
fields have been completed");
 }
}

Resetting a form

Resets all fields, or specified fields, to their original default
value.

The doc object method resetForm(), with no
arguments, will reset all fields in the form to their default
value:

this.resetForm();

It could be set as the action for a “Reset Form” button.

If the default is not set to a specfied value, (which means
the value is Null), the above method has the effect of
clearing the fields so they are left blank.

If you want to reset a subset of all fields, you need to
specify an array that contains the names of all fields to be
reset. For example, the following code builds an array of

two field names and passes the array name as the
parameter to the resetForm() method:

var f = new Array(2);
f[0] = "textField";
f[1] = "totalField";
this.resetForm(f);

You could use the following alternate syntax for setting
up the array:

var f = new Array("textField", "totalField");

Or you could use the Acrobat naming convention; for
example, if you want to reset all name fields, and they are
named name.first, name.last, etc., then the
following will reset all fields that begin with “name”:

var a = new Array(1);
a[0] = "name"
this.resetForm(a);

If you want to set a field to be blank (Null) even though its
default value is something else, you can set it to Null by
using the null string, which consists of two double-quote
characters:

var f = this.getField("myField");
f.value = "";

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 20

 About Forms Documents Actions Testing Resources Index

Validation

Validate that number is in the correct range

Verify that entered value is in one of two ranges.

Standard Acrobat validation can be used for simple
validations such as whether a number is in a given range,
but a custom script can be used for other types of
validations. The following script would be defined as a
custom validation script to be run after a value is entered.

if ((event.value >= 40 && event.value <=200)
 || (event.value
 >= 1000 && event.value <= 2000))
 event.rc = true ;
else {
 app.alert("value out of range");
 event.rc = false ;
}

Verify that required entry was made

Check required fields for a valid entry.

A field’s properties can be set through the Acrobat UI to
indicate that it is a required field, but that field property is
not checked for a data entry value until the form is
submitted (this example is similar to the example “Check
fields before submitting” on page 18).

There can be situations where you might want to check if
specific required entries have been made, before the user
can proceed to other pages. Or you might want to give

them a choice in a dialog to leave some fields blank and
return later.

The following code will check a required field to verify
that required information has been entered (it checks to
see if the field’s value is not Null).

f1 = this.getField("employeeNumber")
if (f1.value == "") {
 app.alert('Please enter your employee
 number');
}

Another way to check required fields before they are
submitted would be by using a field name prefix of
“required”. You could then use the following code which
uses the substring() method to identify fields whose
names begin with “required”:

// Enumerate through all fields
for (var i = 0; i < this.numFields; i++)
{
 if (this.getNthFieldName(i).substring(0,8)
 == "required"){

var f1 =
 this.getField(this.getNthFieldName(i));

if (f1.value == "") {
app.alert(this.getNthFieldName(i) + "

 is a required field!");
f1.setFocus();

}
 }
}

When a required field has a null value, the Focus is set to
that field (f1.setFocus()) so the user can enter

Forms: Code Samples
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 21

 About Forms Documents Actions Testing Resources Index

required information. You might want to also change the
border style or fill color of that field to draw attention to
it, and then reset those properties when data entry has
been completed.

Another method would be to loop through all fields, as
above, and check for the required property for each field.

for (var i = 0; i < this.numFields; i++) {
var f = this.getNthFieldName(i);
var f1 = getField(f);
if (f1.required == true){

if (f1.value == "") {
app.alert(this.getNthFieldName(i) +

 "is a required field!")
}

}
}

Convert user input to uppercase characters

Converts lowercase characters typed by the user into
uppercase characters.

The following code could be used as a custom keystroke
script which will change all lowercase characters to
uppercase (non-lowercase characters typed by the user
will not be affected).:

// Custom keystroke for text field
if (!event.willCommit)
 event.change =
 event.change.toUpperCase();

Restricting keystrokes to uppercase characters

Restrict keystrokes to Y (for Yes) or N (for No) .

The following custom keystroke script will only allow the
user to type Y or N (or y or n).

if (!event.willCommit) {
 if (event.change.match(/[YN]/)) {
 event.rc = true;
 }
 else {
 app.beep();
 event.rc = false;
 }
}

Documents: Code Samples
22

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

JavaScript for Documents
This section contains sample JavaScripts formany PDF
document operations.

Annotations

Add/remove annotations

Create an annotation

Illustrates how to create an annotation of type “Text”.

try {
// Create a document
var myDoc = app.newDoc();

// Create an annot
var myAnnot = myDoc.addAnnot
({

page: 0,
type: "Text",
point: [300,400],
name: "myAnnot",

});
} catch (e) {
app.alert(e);
}

Remove an annotation

Removes an annotation.

The following code will remove all annotations of the
type “Text”, on the first page of the document (page 0 in a
zero-based numbering system):

var annots = this.getAnnots({nPage:0});
for (var i = 0; i < annots.length; i++)

if (annots[i].type == "Text")
 annots[i].destroy();

Application Version

Version checking

Checks the version and type of the Acrobat application, and
lists all plug-ins.

This script could be run from the console or attached to a
button, or included with other JavaScript code in a
document.

// Query App version and output results

var echo = this.getField("Text_output");
echo.value = "Viewer type is " +
 app.viewerType;
echo.value += "\n" + "Viewer version is " +
 app.viewerVersion;

// Now get array of plug-in names
var aPlugins = app.plugIns;
//Get number of plug-ins
var nPlugins = aPlugins.length;
//Enumerate names of all plug-ins

Documents: Code Samples
23

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

for (var i = 0; i < nPlugins; i++)
console.println("Plug-in \#"+i+" is " +

aPlugins[i].name);

N OTE: This code works for Acrobat 5.0 or newer; for
earlier versions, see JavaScript for Acrobat API
Reference.

Bookmarks
To create a new bookmark, invoke the Bookmark object
createChild method, to which you may submit the
following parameters: cName (the name to appear in
the navigational panel), cExpr (an optional JavaScript
to be executed when the bookmark is clicked), and
nIndex (an optional zero-based index into the
children array).

N OTE: Bookmarks cannot be created or removed in
Acrobat Reader.

Create a new bookmark

Creates a new child bookmark at the specified location.

Begin by accessing the bookmarkRoot, which is a
property of the current document representing the top
node in the bookmark tree, and then creating a child
bookmark that displays a greeting when clicked:

var myRoot = this.bookmarkRoot;
myRoot.createChild("myBookmark", "app.alert('
 Hello!');");

Add a child bookmark

Inserts a bookmark as a child of the bookmark in the
previous sample..

The bookmark generated in this example will be named
“myBookmarkChild,” and the associated action is to
display the message “Hello child.”

var current = myRoot.children[0];
current.createChild("myBookmarkChild",
 "app.alert('Hello child!');");

Remove a bookmark

Removes a bookmark and all children bookmarks from the
bookmark tree.

bookmarkRoot.remove();

You can remove a specific bookmark, or the above
command will remove all bookmarks in the tree.

Document Operations

Create a new blank PDF document

Creates a new document in the Acrobat viewer.

Because of security restrictions, this code can only be
executed during batch, console, or menu events.
Running it in the console is an easy way to generate a
blank PDF document for testing purposes.

app.newDoc();

Documents: Code Samples
24

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Metadata: Get document metadata

Allows you to retrieve and display document metadata.

Document metadata is stored in a PDF file as XML data.
This sample gets the path and filename of the
document, and also the XML text for the document
metadata. The following code can be set as an action
attached to a button:

// Display metadata in the
// Text_meta.filename, Text_meta.fpath,
// and Text_meta.data fields

this.getField("Text_meta.fpath").value =
this.path;
this.getField("Text_meta.filename").value=
this.documentFileName;
this.getField("Text_meta.data").value=this.m
etadata;

and the following script could be set as the action for a
button labelled “Clear”:

//Clear the fields:
var fields = this.getField("Text_meta");
this.resetForm(fields);

Open an existing document

Opens the document whose filename is specified as the
string argument.

app.openDoc("MyFile.pdf");

Prompt user for a document to open

Executes the File Open menu item in Acrobat, which
prompts the user for a file to open.

app.execMenuItem("Open");

I MP OR TA N T: As of Acrobat 8, this method can only be
executed in Privileged mode, which means
during batch or console events. See Note
under “Execute menu item” on page 27.

Links

Add navigation links to a page

This sample adds navigational links at the bottom of each
page in the document.

This sample creates two navigtaion links for each page.
For this example, the links direct the user to either page 0
or 2, such as might be used to go to the cover page or the
Table of Contents page of a document.

The links could also be placed over custom navigation
images in the document. This script can also be run from
the JavaScript console.

// Define two link rectangles
var linkRect1 = [70, 70, 225, 50];
var linkRect2 = [260, 70, 340, 50];

// For pages 0 to n (or range of your choice)
for (var i=0; i < this.numPages; i++) {
 // Add link for current page, "i"

Documents: Code Samples
25

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

 var link1 = this.addLink(i, linkRect1);
 link1.borderWidth = 3;
 link1.borderColor = color.blue;

 var link2 = this.addLink(i, linkRect2);
 link2.borderWidth = 3;
 link2.borderColor = color.blue;

 // For this example, link to pages 0 & 2;
 // (For example, the Cover page
 // and Table of Contents pages

 link1.setAction("this.pageNum = 0");
 link2.setAction("this.pageNum = 2");
}

Convert specified word to a weblink

Search for a word and create a weblink.

var p = this.pageNum;
var numWords = this.getPageNumWords(p);
for (var i=0; i<numWords; i++)
{
 var ckWord=this.getPageNthWord(p, i, true);
 if (ckWord == "Acrobat") {

var q = this.getPageNthWordQuads(p, i);
// convert quads in Default User Space to

 // Rotated User Space used by Links.
m = (new Matrix2D).fromRotated(this,p);
mInv = m.invert()
r = mInv.transform(q);
r = r.toString();
r = r.split(",");
l = addLink(p, [r[4], r[5], r[2], r[3]]);
l.borderColor = color.red;
l.borderWidth = 1;

l.setAction("this.getURL('http://
www.adobe.com/products/acrobat', false);");
 }
}

Convert URL text to live links

Convert all content that appears to be a URL into a web link.

The following sample will convert all URLs in the
document into a weblink and display the number of links
created. The code can be entered and executed in the
console.

var numWeblinks = this.addWeblinks();
console.println("There were " + numWeblinks +
" instances of text that looked like a web
address,");

Remove all links on a page

Removes all links on the current page.

The following code can be entered in the JavaScript
console, either for the current page, or it could be used in
a loop to remove links for multiple pages. It first gets the
coordinates of the current page, and then tells the doc
object to remove all links within that rectangle.

var b = this.getPageBox("Crop",
 this.pageNum);
this.removeLinks(this.pageNum, b);

Documents: Code Samples
26

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Set an action for a link

Sets the specified JavaScript action for the Mouse Up trigger
for the link object.

Link.setAction specifies the action for the Mouse Up
trigger for the link object, which is obtained from
doc.addLink or doc.getLinks.

For this example, the action (this.pageNum++) causes
the viewing application to go to the next page:

link.setAction("this.pageNum++");

Menu operations

N OTE: This section contains tasks related to application
menu items. For an example of how to add your
own pop-up menus, see: “Pop-up menus for
zooming” on page 37.

Add a new menu item

Adds a new menu item and an associated action.

This first example adds a menu item to the top of the file
submenu and it puts up an alert dialog displaying the
active document title. This menu item is only enabled if a
document has been opened.

N OTE: Because of security constraints, code to add or
hide menu items can only be used in the
JavaScript console or in folder level JavaScript files
which execute when the application is opened.

The menu changes will then apply to all PDF files
that are opened by the application.

Example 1

Adds a “Hello” entry to the File menu; when selected, the
menu item title is displayed on the user’s screen.

app.addMenuItem({
cName: "Hello",
cParent: "File",
cExec: "app.alert(event.target.info.title,

 3);",
cEnable: "event.rc = (event.target !=

 null);",
nPos: 0

});

Example 2 [Acrobat version 6.0 or newer]

Places two menu items in the “File” menu, one before the
“Close” item, and the other after the “Close” item. The
names “_myProc1” and “_myProc2” are placeholders for
the JavaScript procedures you would write to handle the
intended task for the menu items you are adding.

// insert after the "Close" item
// (the default behavior)
app.addMenuItem({

cName: "myItem1",
cUser: "My Item 1",
cParent:"File",
cExec: "_myProc1()",
nPos: "Close"});

// insert before the "Close" item,
// set bPrepend to true.

Documents: Code Samples
27

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

app.addMenuItem({
cName: "myItem2",
cUser: "My Item 2",
cParent: "File", cExec: "_myProc2()",
nPos: "Close", bPrepend: true

});

Execute menu item

Executes the menu item specified by the argument.

For example:

app.execMenuItem("Open");

will execute the menu item File > Open, which will
prompt the user for the file to be opened.

N OTE: As of Acrobat 8, the execMenuItem method is
restricted to a short list of safe menu entries. It will
silently fail if a named menu item is executed that is not
on the safe menu list. The JavaScript developer is
notified that menu items may be removed in future
releases, or their behavior may change. The
app.execMenuItem method may be executed,
without restriction, in a privileged context, such as in
the console or in a batch sequence. For folder
JavaScript, app.execMenuItem can be executed,
again, without restriction, through a trusted function
with raised privilege. See JavaScript for Acrobat API
Reference for more information.

Hide a menu item

Hides a menu item so user won’t have access to that item.

N OTE: Because of security constraints, code to add or
hide menu items can only be used in the
JavaScript console or in folder level JavaScript files
which execute when the application is opened.
The menu changes then apply to all PDF files that
are opened by the PDF viewer.

app.hideMenuItem("Edit");

N OTE: See List menu items below to get exact menu
names.

List menu items

Display a list of menu items for the Acrobat application; for
use with methods that reference menu items.

In order to hide or execute a menu item, you need to
know the exact name of the menu item.

Example 1

List all menu item names to the JavaScript console.

var menuItems = app.listMenuItems()
for (var i in menuItems)

console.println(menuItems[i] + "\n");

Example 2

List all menu items to console, but more nicely formatted.

function FancyMenuList(m, nLevel) {

Documents: Code Samples
28

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

var s = "";
for (var i = 0; i < nLevel; i++) s += " ";
console.println(s + "+-" + m.cName);
if (m.oChildren != null)
for (var i = 0; i < m.oChildren.length; i++)

FancyMenuList(m.oChildren[i], nLevel + 1);
}
var m = app.listMenuItems();
for (var i=0; i < m.length; i++)
 FancyMenuList(m[i], 0);

Messages/Dialogs

Beep the user

Causes the system to play a sound to alert the user.

app.beep();

Prompt the user for a response

Prompt and get a response from the user.

The user’s response is returned as the value of the
variable reply. That string can then be tested using an
if statement.

var dialogTitle = "Please confirm";
var defaultAnswer = "No.";
var reply = app.response("Did you really mean
to type that?", dialogTitle, defaultAnswer);

Simple alert

Displays a message to the user.

The following code posts a simple alert message:

app.alert("Error! Incorrect entry");

The app.alert object also allows you to customize by:
1) using your own title instead of the standard Acrobat
title; 2) displaying your choice of icons; 3) choosing the
type of buttons shown to the user. The following
example uses a few of those options (the optional
cTitle parameter is only supported for Acrobat 6 or
newer):

app.alert({
cMsg: "Error! Incorrect entry!\n\tYou may

want to try again",
cTitle: "Acme Corporation"

});

In this example, the default title “Adobe Acrobat” was
replaced by “Acme Corporation”, and a second line of the
message is begun on a new line (\n), and a tab is set (\t)
to indent it.

For more information, see the JavaScript for Acrobat API
Reference.

Documents: Code Samples
29

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Navigation

Add a pop-up menu for navigation

Creates a pop-up menu that can be triggered by any of a
variety of events.

This script could be attached as the action for a
“Navigation Menu” button (for example), which could be
placed at strategic locations in a document.

// pops up a menu for going to other pages
var cChoice = app.popUpMenuEx
(

{cName: "Cover page", bEnabled:false},
{cName: "-"},
{cName: "Page 2", cReturn: "2"},
{cName: "More",

oSubMenu: [
{cName: "Page 3", cReturn: "3"},
{cName: "More",

oSubMenu: [
{cName:"Page 4", cReturn: "4"},
{cName:"Page 5", cReturn: "5"}

]
 }

]
},
{cName: "Last page" },
{cName: "-"},
{cName: "Beep On", bMarked:global.bFlag}

)
//app.alert("You chose the \"" + cChoice +
"\" menu item");

if(!isNaN(parseInt(cChoice)))
 this.pageNum =parseInt(cChoice) - 1;
else if(cChoice=="Last page")
 this.pageNum = this.numPages - 1;
else if(cChoice=="Beep On")
 global.bFlag = ! (global.bFlag);
if(global.bFlag) app.beep(0);

Adding page numbers to a document

Adds page numbers to a document in the specified location,
using the specified font style.

var r =[612 -72, 792 -72, 612, 792];
// 1 inch from top right
for(var i = 0; i < numPages; i++) {
 // Get page number string
 var fn = String("page"+i+1);
 var f = this.addField(fn,"text",i,r);
 f.textSize = 14;
 f.textColor = color.blue;
 f.fillColor = color.transparent;
 f.textfont = font.HelvB;
 f.borderStyle = border.s;
 f.strokeColor = color.transparent;
 f.value = String(i+ 1);
}

Get the number of the current page

Gets the current page number.

var currentPage = this.pageNum;

Documents: Code Samples
30

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Go to a specified page number

Sample code to go to a specific page number.

// Go to page 20 (zero-based page numbers)
this.pageNum = 20;

Go to first page

Sets the page being viewed to the first page (zero-based
numbering) in the document.

this.pageNum = 0;

Go to next page

Increments the page being viewed to the next page.

this.pageNum++;

Go to previous page

Navigates to the previous page of the document.

this.pageNum--;

Go to last page

Sets the page being viewed to the last page in the
document.

this.pageNum = this.numPages - 1;

N OTE: Because the JavaScript page numbering is zero
based, if the number of pages in the document is,

for example, 45, then the zero-based number of
that page will be 44.

Go to another page: create a pop-up menu

Creates a pop-up menu which gives the user a choice of
pages to which to go. The script can be attached to a button.

// pops up a menu for going to other pages
var cChoice = app.popUpMenuEx
(

{cName: "Cover page", bEnabled:false},
{cName: "-"},
{cName: "Page 2", cReturn: "2"},
{cName: "More",

oSubMenu: [
{cName: "Page 3", cReturn: "3"},
{cName: "More",

oSubMenu: [
{cName:"Page 4", cReturn: "4"},
{cName:"Page 5", cReturn: "5"}

]
 }

]
},
{cName: "Last page" },
{cName: "-"},
{cName: "Beep On", bMarked:global.bFlag}

)

//app.alert("You chose the \"" + cChoice +
"\" menu item");
if(!isNaN(parseInt(cChoice)))
 this.pageNum =parseInt(cChoice) - 1;

Documents: Code Samples
31

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

else if(cChoice=="Last page")
 this.pageNum = this.numPages - 1;
else if(cChoice=="Beep On")
 global.bFlag = ! (global.bFlag);
if(global.bFlag) app.beep(0);

Add navigational arrows on every page

Add navigational symbols to every page of a document for
each document in a selected set.

The following sample code can be used in a batch
sequence or as folder level JavaScript, or you can execute
it from the JavaScript console.

var inch = 72;
for (var p = 0; p < this.numPages; p++) {
 // position rectangle (.5 inch, .5 inch)
 var aRect = this.getPageBox({nPage: p});
 aRect[0] += .5*inch; // from upper left
 aRect[2] = aRect[0]+.5*inch; // .5” wide
 aRect[1] -= .5*inch;
 aRect[3] = aRect[1] - 24; // 24 points high
 // now construct button field with a right
 // arrow from ZapfDingbats
 var f = this.addField("NextPage", "button",
 p, aRect)
 f.setAction("MouseUp", "this.pageNum++");
 f.delay = true;
 f.borderStyle = border.s;
 f.highlight = "push";
 f.textSize = 0; // auto sized
 f.textColor = color.blue;
 f.fillColor = color.ltGray;
 f.textFont = font.ZapfD

 f.buttonSetCaption("\341") // a right arrow
 f.delay = false;
}

N OTE: For another method for adding navigational links
to document pages, see “Add navigation links to a
page” on page 24.

OCG (Optional Content Group)
OCG objects (images or text) can be selectively viewed or
hidden content in a PDF document using JavaScript.

Beep when OCG state changes

Execute a JavaScript after every state change for a give OCG.

/* Beep when the given OCG is changed */
function BeepOnChange(ocg) {
 ocg.setAction("app.beep()");
}

Show all OCG objects on the currrent page

Make visible all OCG objects in a specified name family.

The following code gets a list of all OCG objects on the
current page, loads them into an array, and then sets
their state to true, which makes them visible. It could be
set as the action for a button to display a given set of OCG
objects.

var ocgArray = this.getOCGs(this.pageNum);
for (var i=0; i < ocgArray.length; i++)
 ocgArray[i].state = true;

Documents: Code Samples
32

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Hide all OCG objects on current page

Hide all OCG objects in a specified name family.

The following code gets a list of all OCG objects on the
current page, loads them into an array, and then sets
their state to false, which hides them. It could be set as
the action for a button to hide a given set of OCG objects.

var ocgArray = this.getOCGs(this.pageNum);
for (var i=0; i < ocgArray.length; i++) {
 ocgArray[i].state = false;
}

Lock OCG objects

Locks the OCG so its state cannot be toggled through the UI.

This sample locks all OCG objects on the current page:

var ocgArray = this.getOCGs(this.pageNum);
for (var i=0; i<ocgArray.length; i++)
 ocgArray[i].locked = true;

Toggle the state of OCG objects

Specifies whether an OCG object is hidden or not.

This code could be associated with a button that toggles
whether a watermark graphic or text is hidden or not.

// Get list of OCG objects for current page
var ocgArray = this.getOCGs(this.pageNum);

// If name begins with "Watermark",
// toggle its display state

for (var i=0; i < ocgArray.length; i++) {
 if (ocgArray[i].name == "Watermark")
 ocgArray[i].state =!ocgArray[i].state;
}

Page Operations

Insert new page

Inserts a new page based on the selected template and then
jumps to the new page.

The following code selects the first template in the
document, and adds a new page at the end.

// get the template
var t = this.getNthTemplate(0);

// spawn a new page after last page
this.spawnPageFromTemplate(t);

// go to new page:
this.pageNum = this.numPages-1;

Insert/Delete/Replace/Extract Pages

Executes a menu item to insert, delete, replace, or extract
pages. The user is prompted to specify the appropriate
pages.

For example, to delete pages:

app.execMenuItem("DeletePages");

Documents: Code Samples
33

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

IMPORTANT: See the note about security restrictions
under “Execute menu item” on page 27.

The other page operation menu options include:
InsertPages, ExtractPages, and ReplacePages.

Printing

Get a list of printers as a combo box

Shows how to get a list of printers and display result as a
combo box.

The following code could be set as the action for a button
to get a list of available printers and populate the combo
box with that list:

this.getField("ComboBox_printers").setItems(
app.printerNames);

Print page using printer selected in combo box

Code to print the current page using the printer selected by
user from the combo box presented in previous example.

This example uses the printer selected from the combo
box created in the example above. The current page of
the document is printed to that printer.

// get printParams object of default printer
var pp = this.getPrintParams();

// print this page
pp.firstPage = this.pageNum;
pp.lastPage = this.pageNum;

// set some properties
pp.interactive =
 pp.constants.interactionLevel.automatic;
pp.colorOverride =
 pp.constants.colorOverrides.auto;

// use the printer selected
var f = this.getField("ComboBox_printers");
var aPrinter = f.valueAsString;
if(aPrinter!=null) pp.printerName = aPrinter;

// print
this.print(pp);

Print only the current page

Sample code to print only the current page.

The following code causes the user to be prompted with
the printing dialog box:

this.print(true,this.pageNum,this.pageNum);

The first parameter, true, specifies that the print UI wil be
presented to the user to obtain printing information and
confirm the action.

Print current page (no dialog)

Print the current page without the usual dialog.

// first param = false = no dialog
this.print(false,this.pageNum,this.pageNum);

Documents: Code Samples
34

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Searching

A simple find operation

A alternative to the standard Acrobat search function; it can
be used to create customized searches.

The following sample shows a folder level JavaScript to
add a new menu item “Find” to the Tools menu.

app.addMenuItem({
cName: "Find",
cParent: "Tools",
cExec: "easyFind()"

});

function easyFind() {
 var wordToFind = app.response({
 cQuestion:"Enter the word you wish to
search for",

 cTitle:"Quick Search"
});
if(wordToFind != null)
 search.query(wordToFind, "ActiveDoc")

};

Also, it is easy to specify search parameters to improve
the quality of the search. The following code from the
easyFind() function shown above illustrates more
possibilities:

 if(wordToFind != null) {
 // what to search:
 search.bookmarks = true; // 6.0
 search.attachments = true; // 7.0
 search.docXMP = true; // 6.0

 // how to match:
 search.matchWholeWord = true; // 6.0

 search.matchCase = true; // 6.0
 search.matchWholeWord = true; // 6.0

 search.ignoreAccents = true; // 7.0

 // do search:
 search.query(wordToFind, "ActiveDoc")

 }

The above example specifies the scope of what will be
searched, and the rules for how to match.

N OTE: The comment next to each search property
indicates the version number of Acrobat that
supports that feature. See the JavaScript for
Acrobat API Reference for more information.

Spell checking

Creating a menu item to spellcheck a document

Spellchecks a document and uses annotations to mark the
misspelled words. [Version 6.0 or higher]

The spell checking can be done by creating a folder level
JavaScript that creates a custom menu item to do the
spellchecking. This sample is similar to the spell checker

Documents: Code Samples
35

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

in Acrobat, except that with JavaScript the search
parameters can be customized.

app.addMenuItem({
cName: "SpellCheck",
cParent: "Tools",
cExec: "SpellCheck();"

});

function SpellCheck(){
 var ckWord, numWords;
 for (var i = 0; i < this.numPages; i++) {
 numWords = this.getPageNumWords(i);
 for (var j = 0; j < numWords; j++) {
 ckWord =
 spell.checkWord(this.getPageNthWord(i, j))
 if (ckWord != null) {
 this.addAnnot({

 page: i,
 strokeColor: color.red,
 type: "Squiggly",
quads: this.getPageNthWordQuads(i, j),
author: "JavaScript SpellChecker",
contents: ckWord.toString()

 });
 }
}
}
app.alert ("Acrobat is done spell checking the
current document",3)
}

Timing

Set countdown timer

Prompt the user for a time interval, and alert the user when
that time has elapsed.

Setting a timer can be used for many purposes, but as a
simple example, the following code prompts the user to
enter the number of seconds, and when the time has
elapsed, a message is displayed.

function TimedOut() {
 app.alert ("The time has elapsed");

 // cancel the timer:
 app.clearInterval(timeout);
}
// Prompt for number of seconds
var secondCount = app.response("Enter number
of seconds", "Number of Seconds", "", "")
// Start counter
if (secondCount >= 0)
// Timer set for thousandths of a second
var timeout = app.setInterval("TimedOut()",
 1000*secondCount);

Documents: Code Samples
36

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Viewing

Viewing Mode

Go to fullscreen mode and start slide show

Switches the viewer to full screen mode and starts a slide
show.

The following code could be attached as the action for a
“Click Me” or “Start Slideshow” button action.

this.pageNum = 0;
// full screen
app.fs.cursor = cursor.visible;
app.fs.defaultTransition = "WipeDown"; //
BoxIn, BoxOut
app.fs.timeDelay = 2; // delay 2 seconds
app.fs.useTimer = true; // activate
automatic page turning
app.fs.usePageTiming = true; // allow page
override
app.fs.clickAdvances = true;
app.fs.escapeExits = true;
app.fs.loop = true;
app.fs.backgroundColor = color.ltGray;

// go
app.fs.isFullScreen = true;

Setting zoom values

Change zoom value

Set the zoom to a percentage of full size.

this.zoom = 40; // Set to 40% zoom

Prompt for a zoom value

Ask the user for a zoom value and set the view to that value.

It may be useful to have a button which, when clicked,
prompts the user to change the zoom value. For
example, some PDF files may specify that the tool bars be
hidden when the document is viewed, so the zoom tools
are not readily available. Also, this might be useful for the
situation where some OCG (Optional Content Group)
objects are only visible at certain zoom values.

// Prompt for a value:
var zoomValue = app.response({

cQuestion:"Enter zoom value:",
cTitle:"Zoom Percentage",

})

// Check if Null; if so, don’t change value
if(zoomValue == "")
 app.alert("No value entered");
else
 this.zoom = zoomValue;

Documents: Code Samples
37

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Pop-up menus for zooming

The following example creates a pop-up menu which might
be attached to a Mouse Up or Mouse Down action for a
button field.

// pops up a menu for various zoom choices
var cChoice = app.popUpMenuEx(
 {cName: "Zoom options:"},

{cName: "-"},
{cName: "Zoom In", cReturn: "zIn"},

 {cName: "View @ 100%", cReturn: "z100"},
{cName: "Zoom Out", cReturn: "zOut" },
{cName: "-"}

)

//
if(cChoice == "zIn")
 this.zoom = 200;
else if (cChoice == "z100")
 this.zoom = 100;
else if(cChoice=="zOut")
 this.zoom = 40;

Watermarks
Following are two methods for adding watermarks to a
PDF document—using either the watermark from an
external file or from text specified in the JavaScript.

Adding a watermark from an external file

Add a watermark from an external PDF file to a selected
range of pages in the current document.

The following code(for Acrobat 7 or higher) adds a
watermark image, from an external file, to the first two
pages of the document.

this.addWatermarkFromFile({
 cDIPath: "/C/watermark.pdf",
 nSourcePage: 0, // select source doc page 0
 nEnd: 1,
 nHorizAlign: 0,
 nVertAlign: 0,
 nHorizValue: 288,
 nVertValue: -144,
});

N OTE: Because of security restrictions, the above script
can only be executed in the JavaScript Console or
in batch mode.

Adding a watermark from text

Add specified text to current document as a watermark.

The following code places the word “Confidential” on all
pages of the document. This code could be run from the
JavaScript console.

this.addWatermarkFromText(
"Confidential", 0, font.HelvB, 24,

 color.red);

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 38

 About this Document

 About Forms Documents Actions Testing Resources Index

Who should read this document

This document is a tutorial-level guide for users who need to add
scripting intelligence to PDF documents and forms.

Document contents

This collection of JavaScript snippets provides code samples that
address a variety of basic tasks commonly faced when trying to
add JavaScript to enhance PDF forms and documents.

The samples are organized into two main categories:

Forms: For adding intelligence to Acrobat forms.

Documents: For all document operations other than
those most suited to use in forms.

Within these categories, the samples are organized by their
functional use rather than by the JavaScript object name, which
makes it easier to find samples for a given task. For more
information, see the Developing Acrobat Applications using
JavaScript.

Prerequisites

This document is intended for users with little or no experience
with JavaScript. However, its use will be greatly enhanced if you
have a basic knowledge of the following:

• The types of events which can trigger JavaScripts actions

• How to use the Acrobat UI to create those actions

• The hierarchy of scripting objects, properties, and methods
(see JavaScript for Acrobat API Reference).

• The PDF coordinate system used in PDF documents

• How to use the JavaScript Console and Debugger to enter,
execute, and test scripts you are developing.

For information on the above topics, see Developing Acrobat
Applications Using JavaScript as well as other documents listed in
the Resources chapter.

Setting JavaScript actions

Adding JavaScript to PDF documents often requires setting
actions for a variety of field types and events. The chapter
Creating actions for events gives a brief summary of how to set
those actions.

Multiple scripting models

A PDF file can either Acrobat forms and documents, or Adobe
LiveCycle XML forms. The following table shows the relationship

A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N 39

 About this Document

 About Forms Documents Actions Testing Resources Index

between the various scripting models, the data formats, and
what tools can be used to create and edit the document.

N OTE: You can tell if a form you open in a PDF file is an XML
form because the form tools in the Tools Menu will
be grayed out.

JavaScript for Acrobat for use in LiveCycle XML forms

JavaScript for Acrobat can also be used in XML forms for
LiveCycle, but its use is restricted to those objects that do not
affect form fields or the structure of the form. For example, it can
be used for tasks such as to open or attach external files,
manipulate annotations, check the version of the viewing

application, etc. It cannot be used to change field values, get field
names, add or remove fields, delete or extract pages, add an
action to a link, create a template, or change tabbing order. Those
types of operations must be done using JavaScript for LiveCycle.

For more information see Converting Acrobat JavaScript for Use in
LiveCycle Designer Forms, available at:

http://partners.adobe.com/public/developer/en/acrobat/sdk/
AcroJS_DesignerJS.pdf

Product Compatibility

Most samples shown in this document are intended for use with
Acrobat 6.0 or greater, except where noted.

Form type Data
type Scripting model File

format
Development /
 Editing tool

Acrobat FDF • JavaScript for
Acrobat

PDF Acrobat (with built-in
JavaScript editor &
debugger

LiveCycle XML • JavaScript
(ECMA script)
for LiveCycle

• JavaScript for
Acrobata

• FormCalc

a. Only a subset of the Acrobat scripting objects can be used in LiveCycle forms; see
JavaScript for Acrobat for use in LiveCycle XML forms , below.

PDF

XDPb

b. XDP format is used with LiveCycle forms

LiveCycle Designer

 About this Document

http://partners.adobe.com/public/developer/en/acrobat/sdk/AcroJS_DesignerJS.pdf

40

 Setting JavaScript Actions
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Creating actions for events

This section explains how to set the various types of JavaScript
actions mentioned in this document.

N OTE: This section covers only the most basic action types.
For complete information, see Developing Acrobat
Applications Using JavaScript.

Setting up for JavaScript
Before you can use JavaScript, you must enable it as described in
Developing Acrobat Applications Using JavaScript.

Executing JavaScript in the JavaScript console

The JavaScript console provides an interface for testing and
debugging your JavaScript code., or you can use the console as a
tool to interact with the document or form. You can either add
intelligence to a PDF document, or you can execute JavaScript
from the console as a processing tool. For example, you could
add a new field to selected pages of an existing forms document,
or add page numbers to a document without them.

From within the Adobe Acrobat application, open the Acrobat
JavaScript console window by:

• Select Advanced > Document Processing > JavaScript
Debugger... or...

• Type Ctrl-j (Windows), or...

• Type Control-j (Macintosh)

To evaluate or execute JavaScript code from the console:

• Type in the code, highlight it, and press the Enter key on the
numeric keypad, or Ctrl+Enter on the regular keyboard.

Field actions
The following briefly describes how to enter custom Field
JavaScripts for triggers such as:

• Mouse Up/Down

• Mouse Enter/Exit

• On Focus/Blur

N OTE: The JavaScript for Acrobat API Reference
recommends using the Mouse Up action rather
than the Mouse Down action, to avoid potential
problems.

To create a custom action:

1. Using the object tool, double-click on a field to bring up
the Field Properties dialog.

2. Select the Actions tab

3. In the Add an Action pane, under Select Action: select a
trigger type such as Mouse Up, etc.

4. Under Select Action, select Run a JavaScript from the pop-
up menu

5. Click the Add button and enter the script in the script
editor window that pops up.

41

 Setting JavaScript Actions
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Custom Validation scripts
The following steps will set a custom validation script for a field.
Custom validation scripts allow you, for example, to examine and
validate what the user has entered before it is stored.

1. Double click on the field to bring up the Field Properties
window.

2. Select the Validate tab.

3. Click the “Run custom validation script” radio button.

4. Click the Edit button, and enter the script.

5. Click OK when done.

Custom keystroke scripts
To create a script which can inspect the user’s keystrokes and
either respond with a warning message or change the keystroke,
do the following:

1. Bring up the Text Field Properties dialog box.

2. Select the Format tab.

3. Under Select Format Category, select Custom from the
pop-up menu.

4. Under Custom Keystroke Script, click on the Edit button.

5. A JavaScript Editor window will pop up, into which you
can enter your custom keystroke script.

Page Actions
Page action scripts allow you to perform actions when a specified
page is opened or closed. To create a Page action script:

1. Click on the Pages tab on the left side of the document
viewing window in Acrobat. Page thumbnails will appear.

2. Click on the icon of the page to which you want to add the
action.

3. Click on the Options pop-up menu at the top of that pane,
and from the pop-up list select Page Properties.

4. Select the Actions tab.

5. From the Select Trigger pop-up menu, select either Page
Open or Page Close, as appropriate.

6. In the Select Action pop-up menu, select Run a JavaScript.

7. Click the Add button and enter the script.

8. When done, click OK.

To define a function or a document open action

A document JavaScript executes when the document is opened,
and can be used to either define a function which can be used
globally in the document, or to execute an action you want
performed before the user sees the document displayed.

To define a document JavaScript function, choose:

Advanced > JavaScript > Document JavaScripts

You can then enter a name for the script and the code you want
executed, into the resulting dialog box, and then click Close.

Setting JavaScript Actions

42

 Setting JavaScript Actions
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

To set document actions

To set a specific document action, choose:

 Advanced > Document Processing > Set Document Actions...

You will get the Document Actions dialog, wherein you can select
events such as Document Will Close, Document Will Print,
Document Did Print, etc. Enter the JavaScript action you would
like to associate with that event and click OK.

To create folder level JavaScript
Folder level JavaScripts are executed by Acrobat when the
application is first opened. For example, if JavaScript is executed
to add a menu item to the application, the resulting menu item
will remain in effect for all documents, as long as the application
is open.

Folder level JavaScripts are placed in separate files that have a .js
file extension, and which are stored in either the Acrobat
Application JavaScripts folder or in the user’s JavaScripts folder.
These scripts are loaded when the Acrobat application starts
execution, and are associated with the Event object’s Application
Initialization (App/Init) Event.

To create folder level JavaScripts, you may use the JavaScript
Editor, or any text editor and save the resulting file with the .js
file extension.

Batch level JavaScripts

A batch level JavaScript is a script that can be applied to a
collection of documents, and operates at the application level.

To create or edit a batch level JavaScript, click on the Advanced
menu and choose the Batch Processing... menu item.

Setting JavaScript Actions

43

 Testing JavaScript
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Testing JavaScript code consists of either executing the code in
the JavaScript console, or using the code in a PDF document. The
section below briefly explains how to enable the built-in Acrobat
debugger for JavaScrip; it is followed by some miscellaneous tips
for using and debugging JavaScript. For more information on
debugging, see Developing Acrobat Applications Using JavaScript.

Enabling the debugger
In order to make the debugger available for use, you must enable
both JavaScript and the debugger. Use the Preferences dialog
box (Ctrl+K) to control the behavior of the JavaScript
development environment. To enable the debugger, select
JavaScript from the list on the left in the Preferences dialog and
make sure the Enable JavaScript debugger option is checked.
Note that you must restart Acrobat for this option to take effect.

Simple debugging
Though Acrobat Professional has a full-featured JavaScript
debugger, you can do simple debugging without learning the
entire debugging process. For simple scripts, you can sometimes
locate problems by (each described in following sections):

• Testing and/or developing script snippets in the console.

• Inserting console.println()commands to write
information to the console.

Testing using the console
The JavaScript console allows you to evaluate single or multiple
lines of code. There are three ways to evaluate JavaScript code
while using the interactive console:

• To evaluate a portion of a line of code, highlight the portion
and press either Enter on the numeric keypad or Ctrl+Enter.

• To evaluate a single line of code, make sure the cursor is
positioned on that line and press either the Enter key on the
numeric keypad or press Ctrl+Enter.

• To evaluate multiple lines of code, highlight the lines and
press either Enter on the numeric keypad or Ctrl+Enter.

In all cases, the result is displayed in the console.

Using the console.println() command

Another way to debug a script is to insert code to print
information to the JavaScript console. For example, if you want to
find out how many times execution got through a for loop
before failing, you could insert the console.println statement
in the loop like this:

for (var i=0; i<numPages; i++)
 console.println("i =" + i)

or you can display the value of a variable (in this example, a
fictitious variable named pageTotal) as follows:

 console.println(“Pages processed so far: ”,
pageTotal);

44

 Testing JavaScript
A C R O B A T C O M M O N T A S K S J AV ASC R I PT C O L L E C T I O N

 About Forms Documents Actions Testing Resources Index

Miscellaneous debugging tips

• When you see “Undefined” displayed after your script
executes in the console. When testing a script in the
JavaScript console, if the script executes correctly, the
message “Undefined” will often appear. The debug
mechanism is designed to output the return value of a
function. But if your code is not a function call, there will be
no returned value, and hence the message “Undefined” is
displayed after execution.

• Using breakpoints. When you set breakpoints in the
JavaScript Debugger window, you must close that window
before you can test the file. It is not necessary to explicitly
save the script or the file; Acrobat saves it automatically, and
it will be there when you next open the window, or when
execution stops at a breakpoint.

Common development problems and tips

• Security restrictions. If you’re having problems with an
action attached, for example, to a field or for a Document
Open event, check the JavaScript for Acrobat API Reference
to make sure that security restrictions do not limit that
method to use only in batch mode or from the JavaScript
console.

• Which scripting model? When you receive a form
document from someone else, if you open it and the forms
tools in the menu bars are grayed-out, it means that it is an

XML-based form, and form field editing cannot be done
using Acrobat. You must open the document using Adobe
Designer. Also, only some JavaScript for Acrobat will work in
a LiveCycle XML form, see Converting Acrobat JavaScript for
Use in LiveCycle Designer Forms, available at:

http://partners.adobe.com/public/developer/en/acrobat/sdk/
AcroJS_DesignerJS.pdf

For all other JavaScript functions, you must use
JavaScript for LiveCycle Designer (which is XML-
based).

• Curly quote characters cause errors. If you have cut-and-
pasted code from another document, it is possible that the
code text has “curly” quote characters (for example, ”
 instead of "), which will cause an error in execution.

• Useful object properties and methods. Familiarize
yourself with doc object properties and methods such as:
 numFields

 numPages

 pageNum

 as well as the doc methods such as:

 getNthFieldName

 getPageNthWord

 getPageNumWords

Those properties and methods are useful for looping
through multiple objects, pages, fields, or words.

http://partners.adobe.com/public/developer/en/acrobat/sdk/AcroJS_DesignerJS.pdf

A C R O B A T C O M M O N T A S K S J A V A S C R I P T C O L L E C T I O N 45

 Resources

 About Forms Documents Actions Testing Resources Index

From Adobe

Adobe Acrobat technical notes are available at:

http://partners.adobe.com/public/developer/acrobat/
sdk/index_doc.html#js

Adobe Documents:

JavaScript For Acrobat API Reference

Developing Acrobat Applications Using JavaScript

Acrobat Online Collaboration: Setup and
 Administration

Acrobat 6.0 Online Training (for ASN members)
http://partners.adobe.com/asn/tech/pdf/training.jsp

Other Resources

General JavaScript:

Core JavaScript 1.5 specification
http://partners.adobe.com/NSjscript/

Flanagan, David, JavaScript, the Definitive Guide
(Sebastopol, California: O'Reilly, 2002).

JavaScript for Acrobat:

Deubert, John, Extending Acrobat Forms with
Javascript. Peach Pit Press, 2003 (Written for Acrobat
5.0, but still useful for newer versions.).

Padova, Ted, Creating Adobe Acrobat Forms, New York:
Wiley, 2002. ISBN: 0-7645-3690-7.

http://partners.adobe.com/asn/tech/pdf/training.jsp

http://partners.adobe.com/NSjscript/

http://partners.adobe.com/public/developer/acrobat/sdk/index_doc.html#js

Main Index

46

 About Forms Documents Actions Testing Resources Index

A

addWatermarkFromFile() 37
addWatermarkFromText() 37
annotations

create an annotation 22
remove an annotation 22

application version number 22

B

batch level JavaScript 42
bookmarks 23

create a new bookmark 23
insert child bookmark 23
remove bookmark 23

C

calculations 9
delay redrawing 9
Turn calculations on/off 9

color
defining a custom color 12

console, JavaScript 40
console.println() 12
custom validation scripts 41

D

date parsing 8
date timestamp 8
dates

Date() 8
display descriptive help text 16
document actions 42
documents

create a new blank document 23
open an existing document 24

prompt user for document to open 24

E

event.target.value 12, 13
event.value 13

F

field properties
alignment 11
background color 11
default value 11
display 11
font 11
font size 11
multiline 11
password 12
required 12
stroke color 12
stroke line width 12

fields
changing field properties 11
check a check box field 12
check before submitting 18
creating new fields programmatically 10
formatting a number 12
hiding existing field based on conditions 13
highlighting a single field 13
highlighting using a function 14
removing zeros from a field 13
set action for multiple fields 18
set an action for a single field 17

folder level JavaScript 42
form submission, checking, and resetting 18
format, custom keystroke script 41
forms

calculations 9
date handling 8

field operations 10
final field checks 18
validation 20

function 41

G

getNthFieldName(i) 17
getting today’s date 9

J

JavaScript console 40
JavaScript function 41

K

keystroke, custom script 41

L

links
add a link to a page 24
link.setAction() 26
remove all links on a page 25
set an action for a link 26

M

Menu operations 26
menus

add a new menu item 26
addMenuItem() 26
app.execMenuItem() 27
app.hideMenuItem() 27
app.listMenuItems() 27
execute menu item 27
hide a menu item 27
list menu items 27

messages/dialogs

 Index

Main Index

47

 About Forms Documents Actions Testing Resources Index

app.alert() 28
app.beep 28
app.response() 28
beep the user 28
prompt the user for a response 28
simple alert 28

metadata
get document metadata 24

methods
addAnnot() 22
addField() 31
addLink() 25
addMenuItem() 35
addWatermarkFromFile() 37
addWatermarkFromText() 37
AFParseDateEx() 8
app.addMenuItem() 26
app.alert() 28
app.beep 28
app.execMenuItem() 24, 27
app.fs.isFullScreen 36
app.listMenuItems() 27
app.newDoc() 23
app.openDoc() 24
app.popUpMenuEx 37
app.popUpMenuEx() 29, 30
app.response() 28
console.println() 23
Date() 8
getAnnots() 22
getNthTemplate() 32
getOCGs() 31
getPageBox() 25
removeLinks() 25
resetForm() 19
search.query() 34
setAction() 14, 25
setItems() 33

spawnPageFromTemplate() 32
spell.checkWord() 35
util.printd 8

mouse down event 17
mouse enter event 16, 17
mouse exit event 16, 17

N

navigation
add a pop-up menu 29
add navigational arrows to every page 31
adding page numbers 29
ap.popUpMenuEx() 29
app.popUpMenuEx() 30
get page number of current page 29
go to first page 30
go to last page 30
go to next page 30
go to page number 30
go to previous page 30
pop-up menu for page selection 30

O

OCG
getOCGs() 31
hide all OCG objects on current page 32
show all OCG objects on currrent page 31
toggle state of OCG objects 32

OCG (Optional Content Group) 31

P

page actions, creating 41
pages

insert new page 32
insert/delete/replace/extract pages 32

PostScript font name 11

printing
get list of printers as a combo box 33
print current page (no dialog) 33
print list of available printers 33
print selected form pages 16
set field to not print 16

properties
app.plugIns 22
app.viewerVersion 22
ocgArray.state 32
setItems(app.printerNames) 33

R

reset form 19
resetForm() 19
restricting keystrokes 21
rollover help 16

S

search
attachments 34
bookmarks 34
ignoreAccents 34
matchCase 34
matchWholeWord 34
metadata (XMP) 34

searching
a simple find operation 34
search all fields with specified prefix 17
search fields 17
search.query() 34

setAction() 14
spell checking

spell.checkWord() 35
spellcheck a document 34

Main Index

48

 About Forms Documents Actions Testing Resources Index

T

timing
set countdown timer 35

V

validation 20
validation, custom scripts 41

verify that required entry was made 20
version checking 22
viewing

app.fs.isFullScreen 36
app.popUpMenuEx 37
change zoom value 36
go to fullscreen and start slide show 36
pop-up menus for zooming 37

prompting for a zoom value 36

W

watermarks
adding from an external file 37
adding from text 37

		JavaScript for Forms

		Date handling

		Date timestamp: first time only

		Date Parsing

		Displaying a localized date

		Getting today’s date

		Calculations

		Calculations: Turn calculations on/off

		Delay redrawing of appearance changes

		Field Operations

		Add/Remove a new field programmatically

		Add/Remove fields on multiple pages

		Changing field properties

		Color: defining a custom color

		Check a check box field

		Formatting a number in a form field

		Formatting: removing zeros so field is blank

		Hiding/un-hiding an existing field based on conditions

		Highlighting a single field

		Highlight fields using a function

		Highlighting multiple fields using a for loop

		Locating fields and listing field names

		Printing: Set field to print or not print

		Print selected form pages

		Rollover help

		Display help text

		Search fields

		Search for all fields with a specified prefix

		Set an action for a single field

		Set an action for multiple fields

		Form checking and resetting

		Final field checks

		Check fields before submitting

		Resetting a form

		Validation

		Validate that number is in the correct range

		Verify that required entry was made

		Convert user input to uppercase characters

		Restricting keystrokes to uppercase characters

		JavaScript for Documents

		Annotations

		Add/remove annotations

		Create an annotation

		Remove an annotation

		Application Version

		Version checking

		Bookmarks

		Create a new bookmark

		Add a child bookmark

		Remove a bookmark

		Document Operations

		Create a new blank PDF document

		Metadata: Get document metadata

		Open an existing document

		Prompt user for a document to open

		Links

		Add navigation links to a page

		Convert specified word to a weblink

		Convert URL text to live links

		Remove all links on a page

		Set an action for a link

		Menu operations

		Add a new menu item

		Execute menu item

		Hide a menu item

		List menu items

		Messages/Dialogs

		Beep the user

		Prompt the user for a response

		Simple alert

		Navigation

		Add a pop-up menu for navigation

		Adding page numbers to a document

		Get the number of the current page

		Go to a specified page number

		Go to first page

		Go to next page

		Go to previous page

		Go to last page

		Go to another page: create a pop-up menu

		Add navigational arrows on every page

		OCG (Optional Content Group)

		Beep when OCG state changes

		Show all OCG objects on the currrent page

		Hide all OCG objects on current page

		Lock OCG objects

		Toggle the state of OCG objects

		Page Operations

		Insert new page

		Insert/Delete/Replace/Extract Pages

		Printing

		Get a list of printers as a combo box

		Print page using printer selected in combo box

		Print only the current page

		Print current page (no dialog)

		Searching

		A simple find operation

		Spell checking

		Creating a menu item to spellcheck a document

		Timing

		Set countdown timer

		Viewing

		Viewing Mode

		Go to fullscreen mode and start slide show

		Setting zoom values

		Change zoom value

		Prompt for a zoom value

		Pop-up menus for zooming

		Watermarks

		Adding a watermark from an external file

		Adding a watermark from text

		About this Document

		Who should read this document

		Document contents

		Prerequisites

		Setting JavaScript actions

		Multiple scripting models

		JavaScript for Acrobat for use in LiveCycle XML forms

		Product Compatibility

		Creating actions for events

		Index

Main Index

Tool Bar Button

		AddToolbarButton:

		RemoveToolbarButton:

		Toolbar_text1: Click the Add Toolbar Button to add a toolbar button of a running man. When you click that item, you will see a message "You have clicked the JavaScript toolbar button".
This sample shows how to add/remove toolbar buttons in Acrobat using the Acrobat JavaScript APIs. The resulting button has warning text below it that tells the user that the added tool is a JavaScript window, as a security measure.

		Toolbar_text2: This example uses the addToolButton method which takes an Icon Stream Generic Object which has three properties: a function that returns the stream data, the width, and the height. The stream is a hexadecimal string that represents the alpha, red, green and blue channels. Each four-byte block represents a single pixel.

		Toolbar_text3: Add the running man logo button:

		Toolbar_text4: Remove the running man logo button:

		myButton1:

		myButton2:

		myButton3:

		myButton4:

		myButton5:

		myButton6:

		myButton7:

		dateField:

		reset:

		exec:

		inputDateField:

		buttonPDFDate:

		outputPDFDate:

		Date_label1: PDF Date Format to JS Date Object

		Date_label2: Convert JS Date Object to PDF Date Format

		Date_label3: Now let’s go the other way. The field below assumes there is a date
object alive from the field above.

		Date:

		text4: pdfDate = util.printd(0, new Date());

		text5: pdfDate = "D:2004";

		text6: pdfDate = "D:200403";

		text7: pdfDate = "D:20000801145605+07’00’";

		text8: pdfDate = "D:200408041200Z"; (noon GMT)

		text9: pdfDate = "D:199812231952-08’00’";

		text10: pdfDate = "D:199812231952-08’30’";

		text11: var d = pdfDate2oDate(pdfDate)

		text12: Converted date:

		Text13: Try entering data of your choice:

		Text14: Input PDF Date Format
(D:YYYYMMDDHHmmSSOHH’mm’)

		ConvertDates_Heading: Converting PDF Dates to JS Date Objects

		ConvertDate_Text0: Select one of the following PDF date formats and click its checkbox to convert that date to a JavaScript date object.

		ConvertDate_Text1: You can also enter your own date in PDF format (as shown) and then click the button to the right of the input box.

Main Index

Adobe Acrobat SDK

JavaScript for Acrobat
Snippet Samples

Doc JS

Sticky Note

Mouse up:

 var echo=this.getField("Text_output");
 echo.value="Viewer type is " + app.viewerType;
 echo.value += "\n" + "Viewer version is " + app.viewerVersion;
 var p = app.getNthPlugInName(2);
 echo.value += "\n" + "The 3rd plug-in is " + p;

Mouse Enter:

 SetButtonActionAsTextValue("Button_jsExecute", "Text_js");

Doc JS

Sticky Note

this.getField("Text_output").value="";

Doc JS

Sticky Note

Mouse Up:
 var f = this.getField("Text_js");
 this.resetForm(f);
 f.setFocus();

Doc_JS

Sticky Note

function SetButtonActionAsTextValue(btnFieldName, textFieldName)
{
 var b = this.getField(btnFieldName);
 var js = this.getField(textFieldName).value;
 b.setAction("MouseUp", js);
}

Sticky Note

Mouse up:

var cChoice = app.popUpMenuEx
(
	{cName: "Cover page", bEnabled:false},
	{cName: "-"},
	{cName: "Page 2", cReturn: "2"},
	{cName: "More",
		oSubMenu: [
			{cName: "Page 3", cReturn: "3"},
			{cName: "More",
				oSubMenu: [
				{cName:"Page 4", cReturn: "4"},
				{cName:"Page 5", cReturn: "5"}
]
 }
]
	},
	{cName: "Last page" },
	{cName: "-"},
	{cName: "Beep On", bMarked:global.bFlag}
)

app.alert("You chose the \"" + cChoice + "\" menu item");
if(!isNaN(parseInt(cChoice)))
 this.pageNum =parseInt(cChoice) - 1;
else if(cChoice=="Last page")
 this.pageNum = this.numPages - 1;
else if(cChoice=="Beep On")
 global.bFlag = ! (global.bFlag);
if(global.bFlag) app.beep(0);

Sticky Note

Mouse up:

var f = this.getField("PopUp_code");
this.resetForm(f);
f.setFocus();

Sticky Note

function SetButtonActionAsTextValue(btnFieldName, textFieldName)
{
 var b = this.getField(btnFieldName);
 var js = this.getField(textFieldName).value;
 b.setAction("MouseUp", js);
}

Sticky Note

Mouse up:

this.getField("Text_meta.path").value = this.path;
this.getField("Text_meta.filename").value= this.documentFileName;
this.getField("Text_meta.outputText").value=this.metadata;

Sticky Note

Mouse up:

// Reset metadata field:

this.resetForm("Text_meta");

Sticky Note

function SetButtonActionAsTextValue(btnFieldName, textFieldName)
{
 var b = this.getField(btnFieldName);
 var js = this.getField(textFieldName).value;
 b.setAction("MouseUp", js);
}

Sticky Note

Mouse up:

this.pageNum = 0;
// full screen
app.fs.cursor = cursor.visible;
app.fs.defaultTransition = "WipeDown"; // BoxIn, BoxOut
app.fs.timeDelay = 2; // delay 2 seconds
app.fs.useTimer = true; // activate automatic page turning
app.fs.usePageTiming = true; // allow page override
app.fs.clickAdvances = true;
app.fs.escapeExits = true;
app.fs.loop = true;
app.fs.backgroundColor = color.ltGray;

// go
app.fs.isFullScreen = true;

Sticky Note

Mouse up:

this.resetForm("FullScreen_code");
f.setFocus();

Sticky Note

Mouse up:

// AddLinks
// make every word "Acrobat" into a link to Acrobat Web site

var p=this.pageNum;
var numWords = this.getPageNumWords(p);
for (var i=0; i<numWords; i++)
{
 var ckWord = this.getPageNthWord(p, i, true);
 if (ckWord == "Acrobat")
 {
	var q = this.getPageNthWordQuads(p, i);
	// convert quads in Default User Space to Rotated
	// User Space used by Links.
	m = (new Matrix2D).fromRotated(this,p);
	mInv = m.invert()
	r = mInv.transform(q)
	r=r.toString()
	r = r.split(",");
	l = addLink(p, [r[4], r[5], r[2], r[3]]);
	l.borderColor = color.red
	l.borderWidth = 1
 l.setAction("this.getURL('http://www.adobe.com/products/acrobat', false);");
 }
}

Sticky Note

Mouse up:

var b = this.getPageBox("Crop", p);
this.removeLinks(this.pageNum, b);

Sticky Note

Mouse up:

// TTS works on windows only
if(app.platform != "WIN")
 app.alert("This sample works on Windows only.");
else {
 var name=this.getField("Speech_name").value;
 var intro=this.getField("Speech_intro").value;

 var str1 = "My name is " + name;
 var str2 = intro;

 if(typeof(tts) != "undefined" && tts.available) {
 tts.qText(str1);
 tts.qText(str2);
 tts.talk();
 }
 else
 {
 var str = "Sorry, Text-To-Speech is not available.";
 app.alert(str);
 app.alert(str1 + " " + str2);
 }
}

Sticky Note

Mouse up:

// Resetting form restores default value
this.resetForm("DisplayProgress_code");

var f = this.getField("DisplayProgress_code");
f.setFocus();

Sticky Note

Mouse up:

// get thermometer
var numOfSteps = 50;
var t = app.thermometer;
// set
t.duration = numOfSteps;
t.value = 0;
// use timer
var run = app.setInterval("myProcess()", 100);
// stop after 5 minute
var stoprun=app.setTimeOut("endProcess()",5000);

function myProcess()
{
var t = app.thermometer;
if(t.value==0) {
t.begin();
t.value += 1;
}
else
t.value += 1;// set current value
if (t.cancelled)
endProcess();
}

function endProcess()
{
t.end();
app.clearInterval(run);
}

Sticky Note

function SetButtonActionAsTextValue(btnFieldName, textFieldName)
{
 var b = this.getField(btnFieldName);
 var js = this.getField(textFieldName).value;
 b.setAction("MouseUp", js);
}

Sticky Note

function CalculateAction()
{
 var display = this.getField("displayText");

 switch(global.calculatorLastAction)
 {
 case "+":
 display.value = global.calculatorLastDisplay
 + display.value;
 break;
 case "-":
 display.value = global.calculatorLastDisplay
 - display.value;
 break;
 case "*":
 display.value = global.calculatorLastDisplay
 * display.value;
 break;
 case "/":
 display.value = global.calculatorLastDisplay
 / display.value;
 break;
 }
}

Sticky Note

function DoAction(action)
{
 var display = this.getField("displayText");

 //if(action == "=")
 CalculateAction();
 // else
 {
 // switch(
 }
 global.calculatorLastDisplay = display.value;
 global.newValue = true;
 global.calculatorLastAction = action;
}

Sticky Note

function IncrementDisplay(value)
{
 var display = this.getField("displayText");

 if(global.newValue == false) {
	if(display.valueAsString == "0" && value != ".")
		display.value = value;
		else {
		if(display.valueAsString.indexOf(".") == -1 || ((display.valueAsString.indexOf(".") != -1) && value != "."))
				display.value = display.valueAsString + value;
		}
	}
 else
 {
		if(value == ".")
			display.value = "0" + value;
		else
			display.value = value;
 global.newValue = false;
 }
}

Sticky Note

var C1 = this.getField("Combine.1");
var C2 = this.getField("Combine.2");
var F1 = this.getField("Forms.1");
var F2 = this.getField("Forms.2");
var R1 = this.getField("Reviews.1");
var R2 = this.getField("Reviews.2");

C1.hidden = false;
C2.hidden = false;
F1.hidden = true;
F2.hidden = true;
R1.hidden = true;
R2.hidden = true;

Sticky Note

var C1 = this.getField("Combine.1");
var C2 = this.getField("Combine.2");
var F1 = this.getField("Forms.1");
var F2 = this.getField("Forms.2");
var R1 = this.getField("Reviews.1");
var R2 = this.getField("Reviews.2");

C1.hidden = true;
C2.hidden = true;
F1.hidden = false;
F2.hidden = false;
R1.hidden = true;
R2.hidden = true;

Sticky Note

var C1 = this.getField("Combine.1");
var C2 = this.getField("Combine.2");
var F1 = this.getField("Forms.1");
var F2 = this.getField("Forms.2");
var R1 = this.getField("Reviews.1");
var R2 = this.getField("Reviews.2");

C1.hidden = true;
C2.hidden = true;
F1.hidden = true;
F2.hidden = true;
R1.hidden = false;
R2.hidden = false;

Main Index

Acrobat JavaScript
— Core JavaScript + Acrobat objects

JavaScript Object : properties, methods()
— Doc : metadata, addLink (nPage, oRect)

JavaScript Location
— Inside PDF �les

• Doc level script
• Action of �elds, links, bookmarks, Doc, Pages

— Outside PDF �les
• Folder level, Console, Batch

Accessibility varies with
— Location, Viewer type, Version, Security, etc

VB JavaScript Object

Sticky Note

Mouse up:

this.getField("hide1").hidden = false;
this.getField("hide2").hidden = false;
this.getField("hide3").hidden = false;
this.getField("hide4").hidden = false;
this.getField("hide5").hidden = false;

Sticky Note

Mouse up:

if(this.getField("hide1").hidden==false)
 this.getField("hide1").hidden=true;
else if(this.getField("hide2").hidden==false)
 this.getField("hide2").hidden=true;
else if(this.getField("hide3").hidden==false)
 this.getField("hide3").hidden=true;
else if(this.getField("hide4").hidden==false)
 this.getField("hide4").hidden=true;
else if(this.getField("hide5").hidden==false)
 this.getField("hide5").hidden=true;
//this.getField("hide1").setFocus();

Sticky Note

function SetButtonActionAsTextValue(btnFieldName, textFieldName)
{
 var b = this.getField(btnFieldName);
 var js = this.getField(textFieldName).value;
 b.setAction("MouseUp", js);
}

Sticky Note

this.getField("ComboBox_printers").setItems(app.printerNames);

Sticky Note

// Print this page

// get the printParams object of the default printer
var pp = this.getPrintParams();
// print this file
// if print another file, specify pp.fileName =
// print this page
pp.firstPage = this.pageNum;
pp.lastPage = this.pageNum;
// set some properties
pp.interactive = pp.constants.interactionLevel.automatic;
pp.colorOverride = pp.constants.colorOverrides.auto;
// use the printer selected
var aPrinter = this.getField("ComboBox_printers").valueAsString;
if(aPrinter!=null) pp.printerName=aPrinter;

// print
this.print(pp);

Sticky Note

// Reset the Print_code field
// to default value

this.resetForm("Print_code");

odonnell

Sticky Note

// get our template
var template1 = getTemplate("FramePage");

// based on the template, append a new page before this page. rename fields.

var newPageNum = this.pageNum;
template1.spawn(this.pageNum, true, false);

// make a new bookmark
var bkName = this.getField("Form_bmName").value;
if(bkName =="") bkName = "New Page";

// make a bookmark in top level
var numChild = bookmarkRoot.children.length - 1;
bookmarkRoot.createChild(bkName, "this.pageNum = " + newPageNum, numChild);

// note that the new bookmark would point to a page by page number, so if the user makes any change in bookmarks or pages, the bookmark action won't function correctly. A more flexible approach is available, but it needs complex code.

// go to the new page
this.pageNum = newPageNum;

		Catalog

		Execute a Script

		Create a Pop-up Menu

		View Metadata

		Set Full Screen Mode

		Add Links to Text

		Convert Text to Speech

		Display a Progress Bar

		Use a Calculator

		Show/Hide Text

		Control Conditional Text

		Locate Printers and Print

		Add a New Page

		Text_js: var echo=this.getField("Text_output");
echo.value="Viewer type is " + app.viewerType;
echo.value += "\n" + "Viewer version is " + app.viewerVersion;
var p = app.getNthPlugInName(2);
echo.value += "\n" + "The 3rd plug-in is " + p;

		Text_output:

		Button_outputClear:

		Button_jsReset:

		Button_jsExecute:

		Button_GoPopup:

		Button_popupReset:

		PopUp_Title: Create a Pop-up Menu

		Metadata_title: View Metadata

		Metadata_text1: Enter the file name of a document and its path and click Go, or use the default which is this document. The document's metadata will be displayed in the window below. You can clear the displayed text by clicking Clear. The document metadata is a property of the

		Metadata_text2: JavaScript Doc object. Note that the output field is set to use an 8-point font size, so some of the metadata may not fit in the field (but you can scroll down).

This example does not work with Adobe Reader.

		Metadata_filenameTitle: File name

		Metadata_pathTitle: Path

		Metadata_metadataTitle: Metadata

		Button_meta:

		go:

		Button_metaClear:

		Text_meta:

		filename: JSSnippetsNew.pdf

		path: /RaysMacBookPro/Users/jtchen/Desktop/JavaScript Samples/Embedded JavaScript/JSSnippetsNew.pdf

		outputText: <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 ">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description rdf:about=""
 xmlns:xmp="http://ns.adobe.com/xap/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
 xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/"
 xmlns:adhocwf="http://ns.adobe.com/AcrobatAdhocWorkflow/1.0/"
 xmp:CreatorTool="PScript5.dll Version 5.2.2"
 xmp:ModifyDate="2008-05-16T14:48:01-07:00"
 xmp:CreateDate="2007-11-14T10:57:50-08:00"
 xmp:MetadataDate="2008-05-16T14:48:01-07:00"
 dc:format="application/pdf"
 pdf:Producer="Acrobat Distiller 8.1.0 (Windows)"
 pdf:Keywords=""
 xmpMM:DocumentID="uuid:cdd5d1cc-3c17-4b34-8217-bf702483820c"
 xmpMM:InstanceID="uuid:fcda3244-4b91-1249-9458-865515ac80a9"
 adhocwf:state="1"
 adhocwf:version="1.1">
 <dc:title>
 <rdf:Alt>
 <rdf:li xml:lang="x-default">JavaScript for Acrobat Snippet Samples</rdf:li>
 </rdf:Alt>
 </dc:title>
 <dc:creator>
 <rdf:Seq>
 <rdf:li>Adobe Developer Technologies</rdf:li>
 </rdf:Seq>
 </dc:creator>
 </rdf:Description>
 </rdf:RDF>
</x:xmpmeta>

		Button_Gofs:

		Button_fsReset:

		FullScreen_title: Set Full Screen Mode

		FullScreen_text1: Click the Go button to view this document in full screen mode. The script will cause the document to display in full screen mode, and it sets the display to automatically turn the page every 2 seconds. Press Esc to quit full screen mode.

		FullScreen_text2: You can edit the code to try various options, and then execute the new code by the Go button again. Click the Reset Code button to restore the default code.

Note: This example uses the SetButtonActionAsTextValue function as explained in the Foreword.

		AddLinks_text1: Click on the buttons below to add and remove links for the sample text below the buttons. The Add button will add a link to Adobe.com for every occurance of the word “Acrobat” on this page.
The JavaScript methods Doc.AddLink(), Doc.RemoveLinks(), Link.SetAction() and others are used in the code for the actions attached to the buttons. Also, note how the script draws a rectangle around the selected words.

		AddLinks_text2: Clicking the Add Links button causes Acrobat to download the referenced page and display it as a PDF document in a separate window. A download progress window will be displayed showing the progress for the files being downloaded.

This example does not work with Adobe Reader.

		AddLinks_title: Add Links to Text

		Btn_addLinks:

		Btn_removeLinks:

		AddLinks_sampleText: Adobe Acrobat® consists of a suite of applications and utilities for creating, modifying, indexing, searching, displaying, and manipulating PDF (Portable Document Format) files.
Viewer applications:
• Acrobat Reader for viewing, navigating, and printing PDF documents.
• Acrobat for adding navigational links, annotations, and security options,
 in addition to the functionality provided by Acrobat Reader.

Tools for creating PDF files:
• Acrobat Distiller® for creating PDF documents from PostScript® files
 from your favorite PostScript® applications (including desktop
 publishing software).
• Acrobat PDFWriter for creating PDF files from your favorite business
 applications using only the Print command.
 Other applications:

		AddLinks_sampleText2: • Acrobat Capture® plug-in with OCR (Optical Character Recognition
 for creating text-searchable PDF documents from scanned paper
 originals.

What Is the Acrobat SDK?
The Acrobat SDK is a “toolbox” that helps you develop software that
interacts with Acrobat technology. The SDK contains header files, type
libraries, simple utilities, sample code, and documentation.
Some of the things you can do with the SDK are:
• Write plug-ins that extend the functionality of the Acrobat viewers
To do this, you use the Acrobat Core API (see “Acrobat Core API” on
page 9.) You may also use the functionality of other Acrobat plugins;
see “Extended APIs For Plug-ins” on page 11.
• Write external applications that communicate with and control
Acrobat. To do this, you use the interapplication communication
(IAC) APIs.

		AddLinks_Label: Sample Text:

		FullScreen_code: this.pageNum = 0;
// full screen
app.fs.cursor = cursor.visible;
app.fs.defaultTransition = "WipeDown"; // BoxIn, BoxOut
app.fs.timeDelay = 2; // delay 2 seconds
app.fs.useTimer = true; // activate automatic page turning
app.fs.usePageTiming = true; // allow page override
app.fs.clickAdvances = true;
app.fs.escapeExits = true;
app.fs.loop = true;
app.fs.backgroundColor = color.ltGray;
// go
app.fs.isFullScreen = true;

		DisplayProgress_title: Display a Progress Bar

		DisplayProgress_text1: Click the Go button to see a progress bar at the bottom of the Acrobat frame window. The code uses the Thermometer JavaScript object and a timer function; the process will last for 5 seconds.

		DisplayProgress_text2: Note: This example uses the SetButtonActionAsTextValue function as explained in the Foreword.

		DisplayProgress_code: // get thermometer
var numOfSteps = 50;
var t = app.thermometer;
// set
t.duration = numOfSteps;
t.value = 0;
// use timer
var run = app.setInterval("myProcess()", 100);
// stop after 5 minute
var stoprun=app.setTimeOut("endProcess()",5000);

function myProcess()
{
var t = app.thermometer;
if(t.value==0) {
t.begin();
t.value += 1;
}
else
t.value += 1;// set current value
if (t.cancelled)
endProcess();
}

function endProcess()
{
t.end();
app.clearInterval(run);
}

		Button_GoThermometer:

		Button_themReset:

		button_speak:

		applause: Applause

		Speach_nameLabel: Type your name:

		Speech_name: Tom

		Speach_introLabel: Introduce yourself:

		Speech_intro: I am a developer from New York

		Print_title: Locate Printers and Print

		Print_text1: First click the Show printers button to get the available printers and display them in the combo box. Select a printer, then click the Print button.
The printers should be properly set up for your system. This is only sample code, and you may need to modify the

		Print_text2: printing parameters if they do not work on your system; see the JavaScript for Acrobat JavaScript API Reference.

Note: This example uses the SetButtonActionAsTextValue function as explained in the Foreward.

		Button_print:

		Button_printReset:

		ComboBox_printers: []

		Label_printers: Select a printer:

		Button_getPrinters:

		Print_code: // get the printParams object of the default printer
var pp = this.getPrintParams();
// print this file
// if print another file, specify pp.fileName =
// print this page
pp.firstPage = this.pageNum;
pp.lastPage = this.pageNum;
// set some properties
pp.interactive = pp.constants.interactionLevel.automatic;
pp.colorOverride = pp.constants.colorOverrides.auto;
// use the printer selected
var aPrinter = this.getField("ComboBox_printers").valueAsString;
if(aPrinter!=null) pp.printerName=aPrinter;

// print
this.print(pp);

		Calculator_title: Use a Calculator

		Calculator_text1: Click the keys on the keyboard below to use the JavaScript calculator.

The calculator uses three document-level functions: IncrementDisplay, CalculateAction, and DoAction.

		Calculator_text2: Clicking a numeric key calls the IncrementDisplay function to add that key's number to the end of the display string. Function keys (such as add, subtract, etc.) result in calls to the DoAction function which decides which action to take.

		displayText: 0

		equals:

		decimal:

		zero:

		three:

		two:

		one:

		four:

		five:

		six:

		add:

		nine:

		eight:

		seven:

		minus:

		divide:

		clearAll:

		multiply:

		Speech_title: Convert Text to Speech

		ConditionalText_title: Control Conditional Text

		ConditionalText_text1: Click "Hide Bullet Items", then click "Show Bullet Item up to five times to reveal the hidden text.

Text in form fields can be easily hidden and unhidden using the ".hidden" property of the field. However, the bullet items below are document text, not text in form fields.

		ConditionalText_text2: The document text is hidden by covering them with blank, opaque, form fields, which the script manipulates using the hidden property. This method is not very elegant, but is included to illustrate a possible use of scripting.

		hide1:

		hide2:

		hide3:

		hide5:

		hide4:

		ConditionalText_SampleHead: What is JavaScript for Acrobat?

		PopUp_code: var cChoice = app.popUpMenuEx
(
	{cName: "Cover page", bEnabled:false},
	{cName: "-"},
	{cName: "Page 2", cReturn: "2"},
	{cName: "More",
		oSubMenu: [
			{cName: "Page 3", cReturn: "3"},
			{cName: "More",
				oSubMenu: [
				{cName:"Page 4", cReturn: "4"},
				{cName:"Page 5", cReturn: "5"}
]
 }
]
	},
	{cName: "Last page" },
	{cName: "-"},
	{cName: "Beep On", bMarked:global.bFlag}
)

//app.alert("You chose the \"" + cChoice + "\" menu item");
if(!isNaN(parseInt(cChoice)))
 this.pageNum =parseInt(cChoice) - 1;
else if(cChoice=="Last page")
 this.pageNum = this.numPages - 1;
else if(cChoice=="Beep On")
 global.bFlag = ! (global.bFlag);
if(global.bFlag) app.beep(0);

		PopUp_text1: Click the Create Menu button to create a pop-up menu. You can then select a menu item to navigate to another page, and use the return-to-previous-view button in the Acrobat menu bar to return to this page. You will be prompted with an alert message showing which menu option you chose.

		PopUp_text2: You can also modify the code below to try other parameters, and then click Create Menu. You can return to the original code by clicking Reset Code.

This example uses the app.popUpMenuEx method to add the menus and set the action for each choice.

		Execute_text1: Click the Execute button to execute the
script shown below in the box below. The type of viewer application, its version number, and the third plug-in loaded (if any) will be displayed in the Text_output field. You can edit the code to try other variations. To do that, you should click Clear to erase any previous output, and then Execute to try the new code.

		Execute_text2: Clicking Reset will reset the code to in Text_js to its original default value.

Note: See the Foreward for an explanation about the script used to enable execution of the editable code in the Text_js field.

		Speech_text1: Type in your name and add some text to introduce yourself, and then click the Speak Out button to hear the text converted to speech.
This example uses the JavaScript TTS object which translate text into speech. That object is currently a Windows-only feature and requires that the Microsoft Text-to-Speech engine be installed in the operating system.

		Speech_text2: This example only works in Windows, and does not work with Adobe Reader.

		TOC_foreward: Foreword

		TOC_col1: Execute a Script

Create a Pop-up Menu

View Metadata

Set Full Screen Mode

Add Links to Text

Convert Text to Speech

		TOC_col2: Display a Progress Bar

Use a Calculator

Show/Hide Text

Control Conditional Text

Locate Printers and Print

Add a Page from a Template

		JSCover_title: A collection of interactive samples that demonstrate JavaScript for
Acrobat being used in PDF forms and documents.

		Combine:

		2:
Share files with virtually anyone, regardless of software or platform.

Combine multiple files into a single PDF document.

Easily organize and place files in the correct viewing order.

Present information in a polished, professional manner.

Share files immediately through e-mail rather than making your recipient wait hours or even days to receive a package by courier or mail.

Archive information in PDF/A, a format that provides the ability to open and view files for years to come.

		1: Key Benefits for Combining and Sharing Documents:

		Forms:

		2: Increase productivity and reduce errors.

Design an electronic form from scratch, leverage an existing form template, or convert a static PDF form to a fillable form.

Enable anyone with free Adobe Reader® software to type information directly into an Adobe PDF form or save it locally to work offline at a later date.

Export all information from a filled form into a spreadsheet for analysis or import into a data system.

		1: Key Benefits for Forms:

		Reviews:

		2: Enable anyone with free Adobe Reader® software to participate in reviews.

Use intuitive commenting and markup tools to articulate feedback.

See and respond to other reviewers' feedback for better collaboration.

Easily sort comments by type, page, author, date, and checkmark status.

Use digital signatures to verify authenticity and obtain approvals.

		1: Key Benefits for Document Reviews:

		Text5: Acrobat Solutions:
What do you want to do?

		Radio ButtonSH: 2

		Show:

		text1: Select one of the radio buttons below to see a set of key benefits for each item.
In this example, each radio button toggles the 'hidden' property for the field.

		text2: Only one button can be set at one time because the three buttons have the same name.

		text6: Combine and share documents?

		text7: Create an electronic form?

		text8: Streamline document reviews

		Execute_title: Execute a Script

		Text8: Document JavaScript:

		Calc_text1: Document JavaScripts:

		Calc_text2: IncrementDisplay

CalculateAction

DoAction

		Forword_title: Foreword

		Foreward_text1: This document provides interactive examples of using JavaScript for Acrobat in PDF forms and documents. Each example demonstrates actions that can be triggered by user interaction, has an explanation of how the sample works, and shows the code used in the scripts. In many cases you can edit the code to try variations and different parameters, and then execute the edited script.

About the samples:

* Most buttons and fields on each page have a text annotation next to them which shows the code used for the action of that button or field.

* Form fields referenced by the code are labelled with their name below the right corner of the field

* Document JavaScript is provided in a text annotation, and can be viewed using a "mouse-over".

You can click the Select Object tool and then select and copy fields (including buttons) or groups of fields, and paste them in another document. The scripts attached to the fields are also copied and will work in the new document. If pasting fields from this document into an another PDF form, be careful that field names and variables/global variables do not conflict. If a script in the example references a document-level JavaScript, be careful to also copy that to the new document.

		Foreward_text2: You can also copy and paste code from the editable code in some examples, and from the annotations showing the code for each button or for document-level JavaScript.

Several examples show code in a window which you can edit to try various parameters. After editing the code, when you tab out, or click in another field (called a "blur" event), which calls the document-level function SetButtonActionAsTextValue. That function sets the text in the window as the action triggered when the chosen event occurs, such as Mouse Up, etc. Click the Reset button to return to the original default code for that field.

Due to the functionality restriction restrictions in Reader, the following samples will not work in Adobe Reader:
 Metadata Text-To-Speech
 Add links Create a new page

The last example in this document allows you to add new pages to this document, using the template (also creates a bookmark for it). You can use it to try new scripts, or to collect your favorite code snippets for later use.

		Foreward_text3: Using Code from the Examples

		Foreward_text5: Samples Not Supported by Reader

		Add_title: Add a New Page from a Template

		Add_text: Add a new page and
make a bookmark
using the following name:

		Form_bmName:

		Form_button_newpage:

		Text0:

		Add_text1: The button below will add a new page to this document using a template page stored in the PDF, and make a bookmark for that page (the page will be inserted before this page).
This document contains a hidden template which has three text fields such as the title above, and these two columns for descriptions.

		Add_text2: Those fields on the new page will have a gray border to make them visible, but you can delete the fields or change properties as desired.

This example does not work with Adobe Reader.

		Template_text1:

		Template_text2:

		Show_text0: Show/Hide Text

		Foreward_text6: Add New Pages

		FullScreen_docJS: Document JavaScript:

		ConditionalText_HideAll:

		ConditionalText_Show:

		Foreward_text4: Editable Code Fields and How They Work

W
at

er
m

ar
k

		Layers_title: Control Layers

		Layers_text1: Click the buttons to get setttings, show or hide layers, or to toggle the watermark. Clicking the Toggle Layers button will hide or show one layer at a time.

Click the Layers icon (two partly overlapping squares, below the pages and bookmark icons) to the left of the document page to show the layers and be able to change their state through the UI.

		Layers_text2: When you click Get Settings, notice that the watermark is in the OCG array; it is located by testing for its name. The other elements on this page are not contained in layers so are not affected by the script.

		Layers_Button13:

		Layers_Button14:

		Layers_Button15:

		Button5:

		Button6:

		OCG_settings:

		Layers_ClearButton:

		Layers_Label1: Settings:

special

Name

special

Address

special

Phone

special

Sex

special

Male

special

Female

special

Line

special

Line

 EmbeddingFormData.pdf - Acrobat SDK sample

 This JavaScript sample demonstrates that a searchable database can be embedded inside a PDF
form document. In the code, the Doc's data object methods are mainly used to create, embed, import, and
export multiple sets of form data; but bookmarks, fields, and many other objects and methods are also
extensively used.
 Some form data are already embedded in the PDF, and you can click the form data entry under
the Form Data List bookmark to retrieve the data.
 The Reset button will empty all form fields.
 To add a set of new data, first fill in the form manually or import data from a FDF file, then press
the Embed Form Data button and input a name. A new bookmark for the data entry will be added.
 You can modify an existing data set by changing some data fields and pressing the Embed button.
When you input the name of an existing data set, you overwrite that data entry.
 To delete a data set, just delete the data entry bookmark. Since the data object associated with the
entry exists after that, you also need to make your confirmation to delete the data object when you save
the PDF form.
 To find certain form data, enter your search values in the fields, then press the search button.
The Search criteria bookmark and the search results will be shown under the form data search bookmark.
You can click them to see the data.
 The code in this sample is located inside a PDF document, but it can be modified to be
folder-level code to work with other PDF form files. This is a sample, however, not a well-developed tool.
Many improvements are left to the developer if they want to use the functionality in the real world.

		Form Data Search

		Search Criteria

		Andy Holman

		Form Data List

		John Daly

		Lucia Johnson

		Andy Holman

		Bob Kern

		Amy London

		Nancy Miller

sdkFormData|Amy London|20040917144518|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|333 First St.^Off^Amy London^890-2317^Yes^F^Yes^Off^pediatrics

sdkFormData|Andy Holman|20040917144338|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|555 Broadway^Yes^Andy Holman^987-1234^Yes^M^Off^Yes^internal medicine

sdkFormData|Bob Kern|20040917144429|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|512 Adams^Off^Bob Kern^567-0222^Off^M^Off^Yes^family practice

sdkFormData|John Daly|20040917144035|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|123 main st.^Off^John Daly^222-6666^Off^M^Yes^Yes^family practice

sdkFormData|Lucia Johnson|20040917144240|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|333 South^Yes^Lucia Johnson^123-4567^Yes^F^Off^Off^general practice

sdkFormData|Nancy Miller|20040917144606|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|1234 West^Off^Nancy Miller^404-5503^Yes^F^Off^Off^internal medicine

sdkFormData|Search Criteria|20041004164917|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|^Off^^^Yes^M^Yes^Off^

sdkFormData|Search Criteria|20080519100545|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|^Off^John^^Off^Off^Off^Off^

sdkFormData|Search Criteria|20080519100739|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|^Off^John^^Off^Off^Off^Off^

sdkFormData|Search Criteria|20080519100859|Address^Arts^Name^Phone^Reading^Sex^Sports^Travel^specialty|^Off^ndy^^Off^Off^Off^Off^

		Name:

		Address:

		Phone:

		Sex: Off

		Sports: Off

		Arts: Off

		Reading: Off

		Travel: Off

		btn_embed:

		btn_reset:

		Text1: Specialty

		Text2: Insurance

		Text3: Golden Choice

		Text4: Open Choices

		Text5: USAccess

		Text6: Golden Medicare

		Text7: Doctor Information

		specialty:

		btn_search:

		btn_help:

		btn_back:

	/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1998-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 sdkAddSignature.js

 - Folder level Acrobat JavaScript file.

***/

/*

 * sdkAddSignature.js

 *

 *

 * Folder Javascript Created by Acrobat SDK.

 * This JavaScript sample shows you can programmatically sign a PDF document using

 * your digital ID file.

 *

 * As a sample, this file has included all the digital signature information

 * except the path and password for the digital ID file to be used.

 * When you are ready to sign a PDF, click the newly added "Add My Signature"

 * menu item under the Edit>Acrobat SDK JavaScript menu.

 *

 * After you input the platform independent path and

 * the password through a dialog, the program will create a digital

 * signature field in the top-left corner, and sign it with your data. The path

 * and password are valid in a Acrobat session, so you can continue to sign more

 * documents in the session without the input dialogs.

 * If you change the code to specify the path and password for the digital ID

 * file to be used in this file, then when you click the menu item, the program will

 * go automatically to sign PDFs without UI.

 *

 * Using the function SetUserPassword() and function SetUserDigitalIDPath() in this

 * folder JavaScript code, you can call the JavaScript to quietly sign a PDF from other

 * JavaScript code, or from a plug-in or IAC VB or VC program through function

 * ExecuteThisScript(). The VB and C Sample code is attached in end of this file.

 *

 * A digital signature file (DrTest.pfx) is provided with the sample for your test

 * To use it, put it in a folder, and specify the proper DIpath (e.g. /C/DrTest.pfx).

 * Its password is "testpassword".

 */

/*

 * Use of an object to emulate a unique namespace.

 *

 * Object literals act like global variables

 * defined within this particular namespace.

 */

if (typeof ACROSDK == "undefined")

	var ACROSDK = {};

	

/*

 * password to use the digital signature

 *

 * to test the sample without user input, specify:

 * ACROSDK.sigUserPwd = "testpassword";

 */

ACROSDK.sigUserPwd = "UNKNOWN";

/*

 * path to the digital signature file

 *

 * to test the sample without user input, specify:

 * ACROSDK.sigDigitalIDPath = "/C/DrTest.pfx";

 */

ACROSDK.sigDigitalIDPath = "UNKNOWN";

// other variables the user can modify

ACROSDK.sigHandlerName = "Adobe.PPKLite";

ACROSDK.sigFieldname = "sdkSignatureTest";

ACROSDK.sigReason = "I want to test my digital signature program.";

ACROSDK.sigLocation = "San Jose, CA";

ACROSDK.sigContactInfo = "sendme@testinc.com";

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

		cName:"ACROSDK:JSSubMenu",

		cUser: "Acrobat SDK JavaScript",

		cParent: "Edit",

		nPos: 0

	});

}

// Add a menu item for AddSignature

app.addMenuItem({

	cName: "ACROSDK:AddSignature",

	cUser: "Add My Signature",

	cParent: "ACROSDK:JSSubMenu",

 cEnable: "event.rc = (event.target != null);",

 cExec: "AddSignature(event.target)"

});

/**

 * main function

 */

function AddSignature(doc)

{

	// if ACROSDK.sigDigitalIDPath is not spcified, ask for user input

	if(ACROSDK.sigDigitalIDPath == "UNKNOWN"){

		var cResponse = app.response({

				cQuestion: "Input your digital ID path:",

				cTitle: "Digital Signature",

				cDefault: "/C/DrTest.pfx",

		});

		

		if (cResponse == null) {

			app.alert("No input.");

			return;

		}

		else

			SetUserDigitalIDPath(cResponse);

	}

		

	// if ACROSDK.sigUserPwd is not spcified, ask for user input

	if(ACROSDK.sigUserPwd == "UNKNOWN"){

		var cResponse = app.response({

				cQuestion: "Input your password:",

				cTitle: "Digital Signature",

				cDefault: "testpassword",

		});

		

		if (cResponse == null) {

			app.alert("No input.");

			return

		}

		else

			SetUserPassword(cResponse);

	}

	// create a new signature field

	var signatureField = AddSignatureField(doc);

	// sign it

	if(signatureField)	Sign(signatureField, ACROSDK.sigHandlerName);

}

/**

 * create a signature field in the upper left conner with name of ACROSDK.sigFieldname

 */

function AddSignatureField(doc)

{

	var inch=72;

	var aRect = doc.getPageBox({nPage: 0});

	aRect[0] += 0.5*inch; // from upper left hand corner of page.

	aRect[2] = aRect[0]+2*inch; // Make it 2 inch wide

	aRect[1] -= 0.5*inch;

	aRect[3] = aRect[1] - 0.5*inch; // and 0.5 inch high

	var sigField = null;

	try {

		sigField = doc.addField(ACROSDK.sigFieldname, "signature", 0, aRect);

	} catch (e) {

		console.println("An error occurred: " + e);

	}

	return sigField;

}

/**

 * define the Sign function as a privileged function

 */

Sign = app.trustedFunction (

 function(sigField, DigSigHandlerName)

	{

	 try {

		 app.beginPriv();

		var myEngine = security.getHandler(DigSigHandlerName);

		myEngine.login(ACROSDK.sigUserPwd, ACROSDK.sigDigitalIDPath);

		sigField.signatureSign({oSig: myEngine,

								bUI: false,

								oInfo: { password: ACROSDK.sigUserPwd,

										reason: ACROSDK.sigReason,

										location: ACROSDK.sigLocation,

										contactInfo: ACROSDK.sigContactInfo}

								});

		app.endPriv

	 } catch (e) {

			console.println("An error occurred: " + e);

	 }

	}

);

/**

 * set a correct password for using the signature, so you can quietly sign a doc.

 */

function SetUserPassword(pwd)

{

	ACROSDK.sigUserPwd = pwd;

}

/**

 * set path to the digital signature file

 */

function SetUserDigitalIDPath(idPath)

{

	ACROSDK.sigDigitalIDPath = idPath;

}

/***

	VB code in an Acrobat IAC program

	to sign a PDF quietly (no Acrobat running on screen),

 using the JS methods in this file

	'

	' At this point, a PDF file has been opened, but Acrobat may be hidden.

		

 ' get acrobat form object

 Dim formApp As AFORMAUTLib.AFormApp

 Set formApp = CreateObject("AFormAut.App")

 ' access some object property in objects inside AcroForm.

 Dim fields As AFORMAUTLib.fields

 Set fields = formApp.fields

 ' One way to use a JavaScript code in VB is through fields' method ExecuteThisJavascript.

 'Dim nVersion As Integer

 'nVersion = fields.ExecuteThisJavascript("event.value = app.viewerVersion;")

 'MsgBox "The Acrobat Viewer Version is " & nVersion

 'Sign the document

 Dim menuItem As String

 Dim digitalIDPwd As String

 Dim digitalIDPath As String

 digitalIDPwd = "testpassword"

 digitalIDPath = "/C/DrTest.pfx"

 menuItem = "ADBESDK:AddSignature"

 Dim jsCode As String

 Dim jsRc As Boolean

 jsCode = "SetUserPassword(" + "'" + digitalIDPwd + "'); SetUserDigitalIDPath(" + "'" + digitalIDPath + "');" + "app.execMenuItem(" + "'" + menuItem + "');"

 ' Execute JS code to sign doc

 fields.ExecuteThisJavascript (jsCode)

 'save & close

 AVDoc.Close (True)

	'

***/

/***

	C code in an Acrobat plug-in

	to sign a PDF quietly using the JS methods in this file

ASBool MyCallJS(PDDoc pdDoc)

{

	if(!pdDoc) return false;

	char jsScript[512];

	char* pwd="testpassword";

	char* digitalIDPath = "/C/DrTest.pfx";

	char* menuItem = "ADBESDK:AddSignature";

	sprintf(jsScript, "SetUserPassword('%s'); SetUserDigitalIDPath('%s'); app.execMenuItem('%s');",

					pwd, digitalIDPath, menuItem); 	

	return AFExecuteThisScript (pdDoc, jsScript, NULL);

}

***/

sdkAddsignature.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Add My Signature.

This JavaScript sample shows you can programmatically sign a PDF document using your digital ID file.

As a sample, this file has included all the digital signature information except the path and password for
the digital ID file to be used.

When you are ready to sign a PDF, click the newly added “Add My Signature” menu item under the
Edit->Acrobat SDK JavaScript menu. After you input the platform-independent path and the password
through a dialog, the program will create a digital signature field in the top-left corner, and sign it with
your data. The path and password are valid in an Acrobat session, so you can continue to sign more
documents in the session without the input dialogs.

If you change the code to specify the path and password for the digital ID file to be used in this file, then
when you click the menu item, the program will automatically sign PDFs without UI.

Using the function SetUserPassword() and function SetUserDigitalIDPath() in this folder JavaScript code,
you can call the JavaScript to quietly sign a PDF from other JavaScript code, or from a plug-in or IAC VB
or VC program through function ExecuteThisScript(). The VB and C sample code is attached at the end of
this file. A digital signature file (DrTest.pfx) is provided with the sample for your test. To use it, put it in a
folder, and specify the proper IDpath (for example /C/ DrTest.pfx). Its password is “testpassword”.

/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1998-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 AnnotatedWords.js

 - Folder-level Acrobat JavaScript file.

***/

/*

 * AnnotatedWords.js

 *

 * This JavaScript adds a menu item under Edit>Acrobat SDK JavaScript menu:

 * Copy Annotated Words.

 *

 * This script returns to the console the words covered by highlight

 * annotations. The script can be adapted to output the text elsewhere,

 * such as to a file. It can also be edited to include other text-related

 * annotations, such as underline or cross-out.

 *

 * Annotations are processed one page at a time. Each page's words

 * are stored in the ACROSDK.pageWords array of Word objects.

 * This is a brute force method; other storage solutions

 * might be considered.

 *

 * This script is limited to single-column, left-to-right, top-to-bottom,

 * horizontal, non-overlapping text.

 * Vertical text, text bound to a shape, right-to-left text, etc.,

 * will require special handling or may not work at all.

 *

 * Note that text is recovered annotation by annotation in the order

 * that the annotations were applied to the doc, not in reading order

 * or any other word order on the page.

 *

 * Text returned may not always match exactly the text covered by the highlight.

 * This is mainly dependent upon two things: 1) whether a word is adjacent to

 * punctuation or not, and 2) whether whole words or partial wordsare highlighted

 * or not.

 * When a word is followed by a space, getPageNthWordQuads()returns the quads of

 * only the word's characters, but if the word is adjacent to punctuation,

 * then the quads returned include the punctuation. Thus, an annotation that

 * includes a word and a space will never have quads that exactly match those

 * returned by getPageNthWordQuads. This script manages this by providing

 * a ACROSDK.vertMargin variable to set a range within which a match

 * might be obtained.

 * Additionally, depending on line spacing, the vertical boundaries of a annotation

 * may not exactly match those of the word. The ACROSDK.horizMargin variable sets

 * the range within a match is considered.

 */

/*

 * Use of an object to emulate a unique namespace.

 *

 * Object literals act like global variables

 * defined within this particular namespace.

 */

if (typeof ACROSDK == "undefined")

	var ACROSDK = {};

	

// array to store page's words and their quads

ACROSDK.pageWords = [];

/*

 * margin in user space units to consider a match for

 * vertical alignment of words and annotations

 *

 * practice has shown this is pretty close

 * except when highlights are multi-line

 *

 * this can be hard-coded or vary with font size and

 * line spacing of document.

 */

ACROSDK.vertMargin = .1;

/*

 * margin in user space units to consider a match for

 * start or end of word and annotation

 *

 * practice has shown horizontal can vary more widely,

 * especially near punctuation and with larger font sizes

 */

ACROSDK.horizMargin = 1;

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

	 cName:"ACROSDK:JSSubMenu",

	 cUser: "Acrobat SDK JavaScript",

	 cParent: "Edit",

	 nPos: 0

	});

}

app.addMenuItem({

 cName:"ACROSDK:CopyAnnotatedWords",

 cUser:"Copy Annotated Words",

	cParent: "ACROSDK:JSSubMenu",

	cExec: "annotatedWordsMain();",

	// active only with docs open

	cEnable: "event.rc = (event.target != null);"

});

		

/**

 * function to define a Word object

 */

function Word(text, wordQuads, quadSets)

{

 this.text = text;

 this.wordQuads = wordQuads;

 this.quadSets = quadSets;

}

/**

 * function to store a documents words

 * as you get them, called for each page

 */

function storePageWords(thisDoc,thisPage)

{

 ACROSDK.pageWords = [];

 for (var wd = 0; wd < thisDoc.getPageNumWords(thisPage); wd++)

 {

 ACROSDK.pageWords[wd] = new Word(thisDoc.getPageNthWord(thisPage,wd), thisDoc.getPageNthWordQuads(thisPage,wd), thisDoc.getPageNthWordQuads(thisPage,wd).length);

 }

}

/**

 * function to return words overlapping with annotation Quads

 *

 * In all cases this function searches from 1st word to last word.

 * An update might be considered which sorts the words in some way

 * and performs a more efficient search based on that sort.

 */

function wordsFromQuads(annotPage, annotQuads)

{

 // return value

 var highlightedWords = "";

 // annotation's boundaries

 var left, right, top, bottom;

 /*

 * review equivalent array entries to the above "sides" since not

 * assigning to vars. We use the wordQuads property instead.

 *

 * wordLeft = ACROSDK.pageWords[i].wordQuads[0][0] = ACROSDK.pageWords[i].wordQuads[0][4]

 * wordBottom = ACROSDK.pageWords[i].wordQuads[0][1] = ACROSDK.pageWords[i].wordQuads[0][3]

 * wordRight = ACROSDK.pageWords[i].wordQuads[0][2] = ACROSDK.pageWords[i].wordQuads[0][6]

 * wordTop = ACROSDK.pageWords[i].wordQuads[0][5] = ACROSDK.pageWords[i].wordQuads[0][7]

 */

 // index for page's words, start at 1st word

 var iWord = 0;

 /*

 * the following variable assignments assume a rectangular quad over

 * horizontal text. That is, (annotQuads[0]==annotQuads[4])= left,

 * annotQuads[1] == annotQuads[3] = bottom, etc.

 * note that array value of quads property consists of points

 * in this order: [X1 Y1 X2 Y2 X4 Y4 X3 Y3]

 *

 * See PDF Reference "Quadpoints Specification" for more information.

 */

 left = annotQuads[0];

 bottom = annotQuads[1];

 right = annotQuads[2];

 top = annotQuads[5];

 /*

 * This assumes left-to-right, top-to-bottom flow of text on page

 *

 * Iterate through words until find a word on same line as annot or run out of words

 * (search vertically for 1st word whose bottom is at or below annotation's bottom)

 *

 * upon exit you have 1st word on same line as current annotation

 */

 while (iWord < ACROSDK.pageWords.length-1)

 {

 if (!((ACROSDK.pageWords[iWord].wordQuads[0][1] > top) && (ACROSDK.pageWords[iWord].wordQuads[0][1] < (bottom + ACROSDK.vertMargin))))

 iWord++;

 else

 break;

 }

 /*

 * Find first word on this line that overlaps with annot

 * while on same line and have not run out of words (due to highlight over space or punctuation only)

 * while words are to left of annot (left edge of word and right edge of word < left

 *

 * upon exit you have first word that overlaps annotation

 */

 while ((ACROSDK.pageWords[iWord].wordQuads[0][0] < left) && (ACROSDK.pageWords[iWord].wordQuads[0][2] < left) && (iWord < ACROSDK.pageWords.length-1) && (Math.abs(bottom - ACROSDK.pageWords[iWord].wordQuads[0][1])< ACROSDK.vertMargin))

 { iWord++; }

 /*

 * if the 1st word does not start after the annotation (no words under annot),

 * then add it to highlighted words and continue adding words

 */

 if ((ACROSDK.pageWords[iWord].wordQuads[0][0] <= (left + ACROSDK.horizMargin)) && (Math.abs(bottom - ACROSDK.pageWords[iWord].wordQuads[0][1])< ACROSDK.vertMargin) && (iWord < ACROSDK.pageWords.length-1))

 {

 highlightedWords = ACROSDK.pageWords[iWord].text + " ";

 iWord++;

 }

 /*

 * while annotation and words overlap horizontally, add more words

 * continue to check that not out of words and on same line

 */

 while (((ACROSDK.pageWords[iWord].wordQuads[0][0] < right) || (ACROSDK.pageWords[iWord].wordQuads[0][2] <= right)) && (Math.abs(bottom - ACROSDK.pageWords[iWord].wordQuads[0][1])< ACROSDK.vertMargin) && (iWord < ACROSDK.pageWords.length-1))

 {

 highlightedWords += ACROSDK.pageWords[iWord].text + " ";

 iWord++;

 }

 return highlightedWords;

}

/*

 * main function

 *

 * called by menu item

 */

function annotatedWordsMain()

{

 var myAnnots = new Array();

 var numQuadArrays;

 var quadArray = new Array();

 // grab Doc object to pass to functions

 var myDoc = event.target;

 console.println("-----------------------------");

 console.println("Acrobat SDK Annotated Words");

 console.println("Document: " +this.info.Title);

 // get document's annotations

 this.syncAnnotScan();

 for (var pg = 0; pg < this.numPages; pg++)

 {

 // get the annots on the page

 myAnnots = this.getAnnots({nPage: pg});

 if(myAnnots != null)

 {

 // store words and quads

 storePageWords(myDoc,pg);

 // print heading

 console.println(" -- Page " + (pg+1) + " -- ");

 // for each annot

 for (var i=0; i<myAnnots.length; i++)

 {

 /*

 * if it's a highlight

 * can also expand this to include Underline, StrikeOut, etc.

 */

 if (myAnnots[i].type == "Highlight")

 {

 /*

 * Each set of quads is handled as a separate annotation when retrieving

 * words. This code could be improved when many multi-line annotations are

 * expected so that words are not searched from beginning of page each time.

 */

 for(var j=0; j<myAnnots[i].quads.length; j++)

 {					

 var results = wordsFromQuads(pg, myAnnots[i].quads[j]);

 if (results != "")

 {

 // check to not print blank lines

 console.println(results);

 }

 }

 }

 }

 }

 }

 console.show(); //open console to show results

}

sdkAnnotatedWords.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Copy Annotated Words.

This script returns to the console the words covered by highlight annotations. The script can be adapted to
output the text elsewhere, such as to a file. It can also be edited to include other text-related annotations, such
as underline or cross-out.

Annotations are processed one page at a time. Each page’s words are stored in the pageWords array of Word
objects.

This is a brute force method; other storage solutions might be considered. This script is limited to single-
column, left-to-right, top-to-bottom, horizontal, non-overlapping text. Vertical text, text bound to a shape, right-
to-left text, and so on will require special handling or may not work at all.

Note that text is recovered annotation-by-annotation in the order that the annotations were applied to the
document, not in reading order or any other word order on the page.

Text returned may not always match exactly the text covered by the highlight. This is mainly dependent on two
things: 1) whether a word is adjacent to punctuation or not, and 2) whether whole words or partial words are
highlighted or not.

When a word is followed by a space, getPageNthWordQuads() returns the quads of only the word’s
characters, but if the word is adjacent to punctuation, the quads returned include the punctuation. Thus, an
annotation that includes a word and a space will never have quads that exactly match those returned by
getPageNthWordQuads. This script manages this by providing a vertMargin variable to set a range within
which a match might be obtained.

Additionally, depending on line spacing, the vertical boundaries of an annotation may not exactly match those
of the word. The horizMargin variable sets the range within which a match is considered.

Pre
lim

in
ar

y,
Dra

ft,
 n

ot f
or p

ro
duct

io
n u

se

Dr. Test

Note

Test note 001.

		Text1: Reader enabled PDF:
The PDF has all usage rights.

		Name: Dr. SDK Expert

		Text3: Name

/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1994-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 sdkAnnotSample.js

 - Javascript code created by Acrobat SDK.

***/

/*

 * sdkAnnotSample.js

 *

 * Folder level JavaScript code to exercise annotation APIs useful in

 * reviewing workflow. It can be used with the Rights-Enabled PDF in Reader

 * as well as the regular PDF in Acrobat.

 *

 * A new menu item is added under the Edit>Acrobat SDK JavaScript menu

 * by this folder JS file.

 * It will trigger a jsADM dialog to show the following functions:

 * Set annotations readonly or editable.

 * Import annotations from a local FDF file.

 * Export annotations to a local FDF file.

 * Export editable annotations to a local FDF file.

 *

 * To run the sample, you need a file for data repository in your environment.

 * A default file is set for Windows in the code.

 *

 * Trusted function is used to raise the execution privilege in Acrobat 7.

 */

/*

 * Use of an object to emulate a unique namespace.

 *

 * Object literals act like global variables

 * defined within this particular namespace.

 */

if (typeof ACROSDK == "undefined")

	var ACROSDK = {};

	

/*

 * Hard coded local file path For output FDF file.

 * The local file must have a safe path in the device-independent format,

 * see AcroJS.pdf for details. The temp directory must exist for fdf

 * to be written to it.

 */

ACROSDK.FDFFile = "/C/temp/annotSample.fdf";

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

	 cName:"ACROSDK:JSSubMenu",

	 cUser: "Acrobat SDK JavaScript",

	 cParent: "Edit",

	 nPos: 0

	});

}

// add a new menu item under Edit for the sample.

app.addMenuItem({

	cName: "ACROSDK:AnnotSample",

	cUser: "Annotation Sample",

	// new menu item under the "Edit" menu.

	cParent: "ACROSDK:JSSubMenu",

	// enabled only if there are open PDFs.

	cEnable: "event.rc = (event.target != null);",

	// when clicked, call an user method.

	cExec: "if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0) \

				trustedAnnotToolkit(ACROSDK.myAnnotToolkitDialog, event.target); \

			else annotToolkit(ACROSDK.myAnnotToolkitDialog, event.target);"

});

// trusted function wrapper for version 7

if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0)

	trustedSaveAnnotsToFile = app.trustedFunction(saveAnnotsToFile);

/**

 * user method

 */

function saveAnnotsToFile(doc)

{

 try{

		doc.syncAnnotScan();

		// for Acrobat 7 to raise the execution privilege of the following code

		if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0)

			app.beginPriv();

		// save annots to file

		doc.exportAsFDF({

 // save to a fdf file with a safe path

 cPath: ACROSDK.FDFFile,	

 // not exporting form data

 aFields:[],

 // export all annotations

 bAnnotations: true

		});

		// end of raising the execution privilege

		if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0)

			app.endPriv();

			

	} catch (e) {

		console.println("error saving annots to file : " + e);

	}

}

/**

 * user method

 */

function saveEditableAnnotsToFile(doc)

{

	try{

		doc.syncAnnotScan();

		// declare an array to store annot properties

		var myCopyAnnotsProps = new Array();

		var num = 0;

		// set doc.delay as true so changes won't be shown immedeately

		doc.delay = true;

		// enumerate annot objects to find read only annots.

		for (var j = 0; j < doc.numPages; j++) {

			var annots = doc.getAnnots({nPage:j});

			for (var i = 0; i < annots.length; i++)

				// store the properties for the readonly annot then delete the annot.

				if(annots[i].readOnly == true)

				{

					myCopyAnnotsProps[num++] = annots[i].getProps();

					annots[i].readOnly == false;

					annots[i].destroy();

				}

		}

		// we only export editable annotations to file

		if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0)

		 trustedSaveAnnotsToFile(doc);

		else

		 saveAnnotsToFile(doc);	

		// after export, we restore the removed annot objects back.

		for (var n in myCopyAnnotsProps)

			doc.addAnnot(myCopyAnnotsProps[n]);

		

		// Ok, now update the display

		doc.delay = false;

	} catch (e) {

		console.println("error saving editable annots to file : " + e);

	}

}

/**

 * user method

 */

function retrieveAnnotsFromFile(doc)

{

	try {

		// load data from FDF file

		doc.importAnFDF(ACROSDK.FDFFile);		

	} catch (e) {

		console.println("error retrieving annots from file : " + e);

	}

}

/**

 * user method

 */

function changeAllAnnotsReadOnly(doc, b)

{

	try{

		// go through all annot objects and set the readonly property

		doc.syncAnnotScan();

		for (var j = 0; j < doc.numPages; j++) {

			var annots = doc.getAnnots({nPage:j});

			for (var i = 0; i < annots.length; i++)

				annots[i].readOnly = b;

		}

	} catch (e) {

		console.println("error changing all annots readOnly property : " + e);

	}

}

// trusted function wraper for version 7

if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0)

	trustedAnnotToolkit = app.trustedFunction(annotToolkit);

// function to launch the dialog

function annotToolkit(dialog, doc)

{	

	dialog.doc = doc;

	if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0)

		app.beginPriv();

	app.execDialog(dialog);

	if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0)

		app.endPriv();

}

// dialog object

ACROSDK.myAnnotToolkitDialog =

{

	// initialize

	initialize: function(dialog)

	{

		dialog.load({ "afil": ACROSDK.FDFFile });

	},

	

	// function associated with button 1 to export all annots

	"btn1":function(dialog)

	{

		ACROSDK.FDFFile = dialog.store()["afil"];

		if (typeof app.formsVersion != 'undefined' && app.formsVersion >= 7.0)

				trustedSaveAnnotsToFile(this.doc);

		else saveAnnotsToFile(this.doc);

			

		dialog.end();

	},

	

	// function associated with button 2 to export editable annots

	"btn2":function(dialog)

	{

		ACROSDK.FDFFile = dialog.store()["afil"];

		saveEditableAnnotsToFile(this.doc);

		dialog.end();

	},

	

	// function associated with button 3 to import annots

	"btn3":function(dialog)

	{

		ACROSDK.FDFFile = dialog.store()["afil"];

		retrieveAnnotsFromFile(this.doc);

		dialog.end();

	},

	

	// function associated with button 4 to set all annots to be read only

	"btn4":function(dialog)

	{

		changeAllAnnotsReadOnly(this.doc, true);

		dialog.end();

	},

	

	// function associated with button 5 to set all annots to be editable

	"btn5":function(dialog)

	{

		changeAllAnnotsReadOnly(this.doc, false);

		dialog.end();

	},

	

	// Dialog Description

	description:

	{

		name: "Annotation Sample",

		elements:

		[

			{

				type: "view",

				align_children: "align_left",

				elements:

				[

					{

						type: "cluster",

						align_children: "align_fill",

						elements:

						[

							{

								type: "button",

								name: "Export All Annotations",

								item_id: "btn1"

							},

							{

								type: "button",

								name: "Export Editable Only",

								item_id: "btn2"

							},

							{

								type: "button",

								name: "Import Annotations",

								item_id: "btn3"

							},

							{

								type: "button",

								name: "Set Annots to Read-Only",

								item_id: "btn4"

							},

							{

								type: "button",

								name: "Set Annots to Editable",

								item_id: "btn5"

							}

]

					},

					{

						type: "view",

						alignment: "align_fill",

						align_children: "align_left",

						elements:

						[

							{

								type: "static_text",

								item_id: "txt1",

								name: "Data File : ",

								font_id: 3

							},

							{

								type: "edit_text",

								item_id: "afil",

								alignment: "align_fill"

							}

]

					},

					{

						type: "ok",

						name: "Close"

					}

]

			}

]

	}

};

sdkAnnotSample.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Annotation Sample.

This sample exercises annotation APIs useful in reviewing workflow. It can be used with the Rights-Enabled
PDF in Reader as well as the regular PDF in Adobe Acrobat.

It will trigger a jsADM dialog to show the following functions:

• Set annotations readonly or editable
• Import annotations from a local PDF file
• Export annotations to a local PDF file
• Export editable annotations to a local PDF file

To run the sample, you need a file for data repository in your environment.

A default file is set for Windows in the code.

Trusted function is used to raise the execution privilege.

/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1998-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 DeleteNoCommentPages.js

 - Folder-level Acrobat JavaScript file.

***/

/*

 * DeleteNoCommentPages.js

 *

 * This JavaScript adds a menu item to the Acrobat SDK JavaScript menu under the

 * Edit menu. The new "Delete Pages Without Comments" menu item deletes those pages

 * in the current document that do not have Annotations on them.

 *

 * This is similar to a Summarize Comments option in Acrobat 6 where only

 * those pages with comments are kept. In Acrobat 7, this option was removed.

 * This JavaScript allows you to simulate the Acrobat 6 option.

 *

 * This script provides a status message (alert) upon completion.

 * It can be removed for silent operation needs such as batch processing.

 *

 * The processed document is not saved.

 */

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

	 cName:"ACROSDK:JSSubMenu",

	 cUser: "Acrobat SDK JavaScript",

	 cParent: "Edit",

	 nPos: 0

	});

}

app.addMenuItem({

 cName:"ACROSDK:DeletePagesWithoutComments",

 cUser:"Delete Pages without Comments",

 cParent: "ACROSDK:JSSubMenu",

 cExec: "mainFunction();",

 cEnable: "event.rc = (event.target != null);" // active only with docs open

});

		

/**

 * main function

 */

function mainFunction()

{

 try {

	 var pageDeleteCount = 0;

	 var pageKeepCount = 0;

	 this.syncAnnotScan();

	

	 // if there are annots in this doc then process pages

	 if (this.getAnnots() != null)

	 {

	 	// for each page -- go backwards so pageNums are constant

	 	for (var p = this.numPages-1; p>=0; p--)

	 	{

	 		var a = this.getAnnots({nPage: p});

		 	

		 	// get the page's annots -- if no annots, delete it

		 	if (a == null)

		 	{

		 		this.deletePages({nStart: p, nEnd: p});

		 		pageDeleteCount++;

		 	}

		 	else // if annot on the page, keep it and count it

		 	{

		 		pageKeepCount++;

		 	}

		 }

	 app.alert(this.title + ": " + pageDeleteCount + " page(s) deleted. " + pageKeepCount + " page(s) kept. ");

	 } else { // else there are no annots

	 	app.alert("No comments in this document. No pages deleted.");

	 }

 }

 catch (e)

 {

 console.println("Error during mainFunction : " + e);

 }

}

sdkDeletenoCommentPages.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Delete Pages without Comments.

Note: This sample does not work in Adobe Reader.

The new “Delete Pages without Comments” menu item deletes those pages in the current document that
do not have Annotations in them.

This is similar to a summarize Comments option in Acrobat 6 where only the pages with comments are
retained. In Acrobat 7, this option was removed.

This JavaScript allows you to simulate the Acrobat 6 option.

This script provides a status message (alert) upon completion. It can be removed for silent operation
needs such as batch processing.

The processed document is not saved.

/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1994-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 sdkGoToBookmark.js

 - Javascript code created by Adobe Acrobat SDK.

***/

/*

 * sdkGoToBookmark.js

 *

 * Folder Javascript Created by Adobe Acrobat SDK.

 *

 * This JavaScript code will add a menu item "Go To Bookmark..." under Edit>Acrobat SDK JavaScript menu.

 * The menu function looks for a bookmark matching user input in a PDF document. If found,

 * execute the bookmark action that generally is going to a pageview.

 *

 * The user input string is the name of a bookmark to look for.

 * The search is case insensitive. Various format examples:

 * < Work with the samples_guide.pdf document in SDK >

 * "SDKJSSnippets" - get the first match in any level

 * "Guide to SDK Samples:JavaScript Samples:Inside PDF:SDKJSSnippets" -	hierarchy,

 * each token in one level down.

 * "Guide to SDK Samples:*:SDKJSSnippets" - hierarchy,

 * "*" means there may be any number of levels there.

 *

 * To cancel, press Esc on Wins or command-period on Mac.

 */

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

	 cName:"ACROSDK:JSSubMenu",

	 cUser: "Acrobat SDK JavaScript",

	 cParent: "Edit",

	 nPos: 0

	});

}

// Add a menu for GetBookmarkName()

app.addMenuItem({

 cName: "ACROSDK:GoToBM",

 cUser: "Go To Bookmark...",

 cParent: "ACROSDK:JSSubMenu",

 cEnable: "event.rc = (event.target != null);",

 cExec: "GetBookmarkName(event.target)"

});

/**

 * Take the doc object pass to use from the menu, get the bookmark to search for

 * and pass these to GoToBookmark()

 */

function GetBookmarkName(doc)

{

	var str = util.printf("Enter a Bookmark to find in document %s. \nUse A:B:C:D or A:*:D for hierarchy.", doc.documentFileName);

 resp = app.response({

 cTitle: "Find Bookmark",

 cQuestion: str

 });

 if (resp != null) {

		if(GoToBookmark(doc, resp)==null)

			app.alert("The bookmark is not found.");

	}

}

/**

 * it search for a specific bookmark in a PDF document. If found,

 * execute the bookmark action that generally is going to a pageview.

 *

 * input: pdfDoc - Doc object

 * input: bmNameToFind - string, name of a bookmark to look for.

 * The search is case insensitive. Various format examples:

 * "ASFileClose" - get the first match in any level

 * "methods:as layer methods:asfile:ASFileClose" -	hierarchy,

 * each token in one level down.

 * "methods:*:ASFileClose" - hierarchy,

 * "*" means there may be any number of levels there.

 */

function GoToBookmark(pdfDoc, bmNameToFind)

{

	// split a possible hierarchy bookmark name such A:B:C into tokens

	var tokens = bmNameToFind.split(':');

	

	// use app thermometer

	var therm = app.thermometer

	therm.duration = 10*tokens.length;

	therm.begin();

	therm.text = "Search bookmarks ... \(Cancel key: Esc on Win, command-period on Mac.\)";

	therm.value = 2;

	// search

	var nLevel = 0;

	var bmFound;

	var bmMatch;

	// go through each token to find match

	for(var i=0;i<tokens.length;i++) {

		// the first token can be in any level of bookmarks

		if(i==0) {

			// remove any star tokens in front

			while (tokens[i]=="*") {

				i++;

			}

			

			bmFound = FindBookmarkByName(pdfDoc.bookmarkRoot, tokens[i]);

		}

		// the star token can be in any level under the previous one

		else if (tokens[i]=="*" && i+1<tokens.length) {

			bmFound = FindBookmarkByName(bmMatch, tokens[++i]);

		}

		// the token other than star must in the level next to the previous token

		else {

			bmFound = null;

			if(bmMatch.children != null)

			for(var j=0;j<bmMatch.children.length;j++) {

				if(bmMatch.children[j].name.toLowerCase() == tokens[i].toLowerCase()) {

					bmFound = bmMatch.children[j];

					break;

				}

			}

		}

		// substitution if found

		if(bmFound != null)

			bmMatch = bmFound;

		// not found, end the process, return null.

		else {

			therm.text = " ";

			therm.end();

			return null;

		}

		// set current value of thermometer

		therm.value = 10*(i+1);

	}

	therm.text = " ";

	therm.end();

	// if found, execute its action.

	bmFound.execute();

	// return the bookmark

	return bmFound;

}		

		

function FindBookmarkByName(bmHead, bmNameToFind)

{

	// check this bookmark itself

	if(bmHead.name.toLowerCase() == bmNameToFind.toLowerCase())

		return bmHead;

	// check its children

	if(bmHead.children != null)

		for(var i=0;i<bmHead.children.length;i++) {

			// recurse

			var bmMatch = FindBookmarkByName(bmHead.children[i], bmNameToFind);

			

			// return if found a match

			if(bmMatch != null) return bmMatch;

			

			// check if the search is canceled.

			if(app.thermometer.cancel) {

				return null;

			}

		}

	// not found

	return null;

}

sdkGoToBookmark.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Go to Bookmark.

The menu function looks for a bookmark matching user input in a PDF document. If found, execute the
bookmark action that generally is going to a page view.

The user input string is the name of a bookmark to look for.

The search is case insensitive. Various format examples <Work with the samples_guide.pdf document in
SDK>.

• “SDKJSSnippets” – get the first match in any level
• “Guide to SDK Samples:JavaScript Samples:Inside PDF:SDKJSSnippets” – hierarchy, each

token in one level down.
• “Guide to SDK Samples:*:SDKJSSnippets” – hierarchy, “*” means there may be any number of

levels there.

 To cancel, press Esc in Windows or command-period in Mac OS.

/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1994-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 sdkPresentationMonitor.js

 - Folder Javascript sample created by Acrobat SDK.

***/

/*

 * sdkPresentationMonitor.js

 * Folder Javascript Created by Acrobat SDK.

 *

 * This folder level JavaScript sample will create a set of tools to monitor

 * the progress of a presentation using PDF slides.

 * This JavaScript code will add a menu item "Presentation Monitor..." under

 * the Edit>Acrobat SDK JavaScript menu. Click it to get a dialog box to enter

 * a number of minutes you plan to have for the presentation. After that a monitor

 * shown in the top of slide page will start. When you go through the pages, you can

 * use the following tools:

 * - a message showing number of pages untouched.

 * - a message showing time left.

 * - a time progress bar.

 * - a set of page icons:

 * The page icons with the different colors can indicate which page is current,

 * and which pages have been navigated. When the mouse enter/exit a page

 * icon, the page image will be shown/hidden in the top left corner. Click

 * a page icon, you can go to that page.

 * - the check box: check/uncheck to toggle "show" or "hide" the time bar and page icons.

 * - the quit button with "X": click to quit the monitor tool.

 *

 * Note:

 * The display may be slow since a great number of form field are added through JavaScript.

 * There is a known issue. When the top margin is not enough, this tool set may overlap the

 * slide contents. Some improvement may be needed in that situation, e.g. to relocate the monitor

 * tool set, or first to draw a blank field in the top portion of each slide. As a sample,

 * the code improvement is not provided.

*/

/*

 * Use of an object to emulate a unique namespace.

 *

 * Object literals act like global variables

 * defined within this particular namespace.

 */

if (typeof ACROSDK == "undefined")

	var ACROSDK = {};

	

// the PDF presentation

ACROSDK.targetDoc = null;

// time

ACROSDK.nTotalMin;

ACROSDK.nIntervalSecond = 1;

ACROSDK.nSpentSec;

ACROSDK.nMaxTotalTimeMin = 120;

ACROSDK.nMaxOvertimeMin = 10;

ACROSDK.oTimeStart;

// dimension

ACROSDK.inch = 72;

ACROSDK.barWidth;

// UI

ACROSDK.aPagesFlag = new Array();

ACROSDK.bHidden;

ACROSDK.bHotButton;

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

	 cName:"ACROSDK:JSSubMenu",

	 cUser: "Acrobat SDK JavaScript",

	 cParent: "Edit",

	 nPos: 0

	});

}

// Add a menu for ProgressMonitor()

app.addMenuItem({

 cName: "ACROSDK:TimeMonitor",

 cUser: "Presentation Monitor...",

 cParent: "ACROSDK:JSSubMenu",

 cEnable: "event.rc = (event.target != null);",

 cExec: "ProgressMonitor(event.target);"

});

/**

 * main entry

 */

function ProgressMonitor(doc)

{

	// if time monitor has already created, do nothing.

	if(doc.getField("timeMonitorFields")) return;

	// ask user to input a time length

	ACROSDK.nTotalMin = app.response({

		cQuestion: "Enter the total minutes \(<120\) you will have for the presentation:",

		cTitle: "Time Monitor",

		cDefault: "1",

		cLabel: "Response:"

	});

	

	if (ACROSDK.nTotalMin == null){

		return;

	} else if (isNaN(ACROSDK.nTotalMin)) {

		app.alert("Must enter a number.")

		return;

	} else if (ACROSDK.nTotalMin>ACROSDK.nMaxTotalTimeMin) {

		app.alert("Maximum time is 120 minutes.")

		return;

	}

	// initialize global variables

	ACROSDK.nSpentSec = 0;

	ACROSDK.targetDoc = this;

	ACROSDK.bHidden = false;

	ACROSDK.bHotButton = false;

	// initialize page flags

	for(var i=0;i<doc.numPages;i++)

		ACROSDK.aPagesFlag[i] = false;

 try {

 // set time started

 ACROSDK.oTimeStart = new Date();

 // set a timer

 runTimeBar = app.setInterval("TimeGoing()", ACROSDK.nIntervalSecond*1000);

 // set time out for the timer

 stopTimeBar=app.setTimeOut("TimeOutProc(ACROSDK.targetDoc);",(ACROSDK.nTotalMin)*60000+ACROSDK.nMaxOvertimeMin*60000);

 // set doc actions to clean up when doc is closed

 doc.setAction("WillSave", "AskAndClean(ACROSDK.targetDoc);");

 doc.setAction("WillClose", "AskAndClean(ACROSDK.targetDoc);");

 } catch (e) {

 console.println("Error in timer set up");	

 }

}

/**

 * privileged function

 */

trustedBII = app.trustedFunction(

 function(f, nPage)

 {

 app.beginPriv();

 f.buttonImportIcon(this.path, nPage);

 app.endPriv();

 }

);

/**

 * function to create time progress bar and page icons

 */

function CreatebarAndPages(doc, nPage)

{

 try {

 // flag

 ACROSDK.aPagesFlag[nPage] = true;

 // get page box

 var aRect = doc.getPageBox("Crop",nPage);

 // cancel button ---

 var barHeight = 0.25*ACROSDK.inch;

 var x1 = aRect[2]-10-barHeight;

 var x2 = x1 + barHeight;

 var y1 = aRect[1]-5;

 var y2 = aRect[1]-5-barHeight;

 var fCancel = doc.addField("newTimerShort.btnCancel."+nPage, "button", nPage,

 [x1, y1, x2, y2])

 fCancel.setAction("MouseUp", "AskAndClean(ACROSDK.targetDoc);");

 fCancel.buttonSetCaption("X");

 fCancel.textColor = ["RGB",1,0,0];;

 fCancel.strokeColor = ["RGB",1,0,0];

 /*

 * toggle hide/show button ---

 * we create the same button in every page, so we can get general control.

 */

 if (ACROSDK.bHotButton == false) {

 var j;

 for (j=0;j<doc.numPages;j++) {	

 var fToggle = doc.addField("newTimerShort.btnToggle", "checkbox", j,

 [x1, aRect[1]-10-barHeight, x2, aRect[1]-10-2*barHeight]);

 fToggle.checkThisBox(0,true);

 fToggle.setAction("MouseUp", 'var f = this.getField("timeMonitorFields"); f.hidden = !(this.getField("newTimerShort.btnToggle").isBoxChecked(0)); ');

 fToggle.strokeColor = ["RGB",0,0,1];

 }

 ACROSDK.bHotButton = true;

 }

 // time progress bar ---

 ACROSDK.barWidth = (aRect[2] - aRect[0])*3/4;

 x2 = aRect[2] - 0.5*ACROSDK.inch;

 x1 = x2 - ACROSDK.barWidth;

 y1 = aRect[1] - 6;

 y2 = y1 - barHeight;

 px1 = x1;

 px2 = x2;

 py1 = y2 - 6;

 py2 = y2 - 6 - barHeight;

 var pdx = ACROSDK.barWidth/(doc.numPages);

 // the static bar as a base

 var fStaticBar = doc.addField("timeMonitorFields.rectBase"+nPage, "button", nPage,

 [x1, y1, x2, y2])

 fStaticBar.borderStyle = border.s;

 fStaticBar.fillColor = ["RGB",1,1,.755];

 fStaticBar.strokeColor = color.black;

 // the moving bar to show the time progress

 var fMovingBar = doc.addField("timeMonitorFields.rectMoving."+nPage, "button", nPage,

 [x1, y1, x1+2, y2])

 fMovingBar.borderStyle = border.s;

 fMovingBar.fillColor = color.blue;

 fMovingBar.strokeColor = color.blue;

 // time message ---

 var fTimeMessage = doc.addField("newTimerShort.txtTimeLeft", "text", nPage,

 [aRect[0]+10, y1, aRect[0]+1.8*ACROSDK.inch, y2])

 fTimeMessage.borderStyle = border.u;

 fTimeMessage.textColor = color.blue;

 // page message ---

 var fPageMessage = doc.addField("newTimerShort.txtPagesLeft", "text", nPage,

 [aRect[0]+10, y2-4, aRect[0]+1.6*ACROSDK.inch, y2-4-barHeight])

 fPageMessage.borderStyle = border.u;

 fPageMessage.textColor = ["RGB",0.3,0.6,0.2];

 // page image button ---

 var fPageImage = doc.addField("newTimerShort.btnPageImage."+nPage, "button",

 nPage, [aRect[0]+10, py2,aRect[0]+ACROSDK.barWidth/2, py2-ACROSDK.barWidth/3])

 fPageImage.readonly = true;

 fPageImage.borderStyle = border.i;

 fPageImage.buttonPosition = position.iconOnly;

 fPageImage.hidden = true;

 fPageImage.fillColor = color.gray;

 // page rectangles ---

 var pdWidth = Math.floor(ACROSDK.barWidth/(doc.numPages-1));

 if (pdWidth > barHeight) pdWidth = barHeight;

 for (j=1;j<=doc.numPages;j++) {

 var fPageRectangle = doc.addField("timeMonitorFields.rectPages." + j, "button", nPage,

 [px1+j*pdx-pdWidth, py1, px1+j*pdx, py2]);

 fPageRectangle.textSize = 0; // auto sized

 fPageRectangle.textColor = color.black;

 fPageRectangle.buttonSetCaption(j);

 fPageRectangle.borderStyle = border.s;

 fPageRectangle.fillColor = ["RGB",1,1,.855];

 fPageRectangle.strokeColor = color.black;

 // set the button actions ---

 // go to the page image when the mouse clicks.

 var fname = "newTimerShort.btnPageImage." + nPage;

 var jsCode = 'var f = this.getField("' + fname + '").hidden = true; this.pageNum = ' + (j-1);

 fPageRectangle.setAction("MouseUp",jsCode);

 // show the page image when the mouse enters

 jsCode = 'var f = this.getField("' + fname + '");'

 + 'f.hidden = false; trustedBII(f,' + (j-1) + ');';

 fPageRectangle.setAction("MouseEnter",jsCode);

 // hide the image when the mouse exits.

 jsCode = 'var f = this.getField("' + fname + '");'

 + 'f.hidden = true;';

 fPageRectangle.setAction("MouseExit",jsCode);

 }

 } catch (e) {

 console.println("Error in create field, bar, and page icons");	

 }

}

/**

 * function for the timer.

 * it will be executed after every time interval, say 1 second.

 */

function TimeGoing()

{

 try {

 // get time Elapsed from a Date funtion

 var nSpentSec = Math.floor(MilliSecondsElapsed()/1000);

 // create "time monitor" fields in the page if they are not done.

 if (ACROSDK.aPagesFlag[ACROSDK.targetDoc.pageNum] == false)

 CreatebarAndPages(ACROSDK.targetDoc, ACROSDK.targetDoc.pageNum);

 this.getField("timeMonitorFields").hidden = ACROSDK.bHidden;

 // update pages icons

 var nLeftPages = 0;

 for (var i=0;i<ACROSDK.targetDoc.numPages;i++) {

 if (ACROSDK.aPagesFlag[i] == false)

 nLeftPages++;

 else if (i==ACROSDK.targetDoc.pageNum)

 ACROSDK.targetDoc.getField("timeMonitorFields.rectPages." + (i+1)).fillColor = ["RGB",1,.855,1];

 else

 ACROSDK.targetDoc.getField("timeMonitorFields.rectPages." + (i+1)).fillColor = ["RGB",.7,1,1];

 }

 // message showing pages left

 var sP = ACROSDK.targetDoc.getField("newTimerShort.txtPagesLeft");

 sP.value = nLeftPages + " page\(s\) left.";

 // update time monitor bar

 var sT = ACROSDK.targetDoc.getField("newTimerShort.txtTimeLeft");

 var sB = ACROSDK.targetDoc.getField("timeMonitorFields.rectBase" + ACROSDK.targetDoc.pageNum);

 var sM = ACROSDK.targetDoc.getField("timeMonitorFields.rectMoving." + ACROSDK.targetDoc.pageNum);

 var gdelta = ACROSDK.barWidth/(ACROSDK.nTotalMin*60/ACROSDK.nIntervalSecond);

 var sMrect2 = sM.rect[0]+gdelta*nSpentSec;

 if (sMrect2 < sB.rect[2]) {

 sM.rect = [sM.rect[0],sM.rect[1],sMrect2,sM.rect[3]];

 var nLeftMin = Math.floor((ACROSDK.nTotalMin*60 - nSpentSec)/60);

 var nLeftSec = ACROSDK.nTotalMin*60 - nSpentSec - nLeftMin*60;

 if (nLeftSec<10) nLeftSec = "0" + nLeftSec;

 sT.value = nLeftMin + ":" + nLeftSec + " minute\(s\) left";

 } else {

 sM.rect = [sM.rect[0],sM.rect[1],sB.rect[2],sM.rect[3]];

 sM.buttonSetCaption("Time is up !");

 sM.textColor = color.red;

 var nOverMin = Math.floor((nSpentSec - ACROSDK.nTotalMin*60)/60);

 var nOverSec = nSpentSec - ACROSDK.nTotalMin*60 - nOverMin*60;

 if(nOverSec<10) nOverSec = "0" + nOverSec;

 sT.value = nOverMin + ":" + nOverSec + " overtime";

 sT.textColor = color.red;

 }

 ACROSDK.bHidden = !(this.getField("newTimerShort.btnToggle.").isBoxChecked(0));

 } catch (e) {

 console.println("Error in timer execution function");	

 }

}

/**

 * function to get user comfirmation

 */

function AskAndClean(doc)

{

	// if it's already cleaned, do nothing.

	if(!doc.getField("timeMonitorFields")) return;

	// ask user for confirmation

	var nButton = app.alert({

		cMsg: "Do you want to quit time monitor?",

		cTitle: "Time Monitor",

		nIcon: 2, nType: 2

	});

	

	if (nButton != 4) return;

	// clean

	try {

		app.clearInterval(runTimeBar);

		app.clearTimeOut(stopTimeBar);

		doc.removeField("timeMonitorFields");

		doc.removeField("newTimerShort");

		ACROSDK.nSpentSec = 0;

	} catch (e) {}

}

/**

 * function for the timer

 */

function TimeOutProc(doc)

{

	try {

		app.clearInterval(runTimeBar);

		app.clearTimeOut(stopTimeBar);

		doc.removeField("timeMonitorFields");

		doc.removeField("newTimerShort");

		ACROSDK.nSpentSec = 0;

	} catch (e) {}

}

/**

 * function for the timer

 */

function MilliSecondsElapsed()

{

	oTimeNow = new Date();

	return (oTimeNow - ACROSDK.oTimeStart);

}

sdkPresentationMonitor.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Presentation Monitor.

This JavaScript sample will create a set of tools to monitor the progress of a presentation using PDF slides.

Select the menu item to get a dialog box to enter a number of minutes you plan to have for the presentation.
After that, a monitor shown in the top of slide page will start.

When you go through the pages, you can use the following tools:

• A message showing the number of pages untouched
• A message showing time left
• A time progress bar
• A set of page icons

The page icons with the different colors can indicate which page is current, and which pages have
been navigated. When the mouse enters/exits a page icon, the page image will be shown/hidden in
the top left corner. Click a page icon to go to that page.

• The check box: check/uncheck to toggle “show” or “hide” the time bar and page icons
• The quit button with “X”: click to quit the monitor tool

Note:

The display might be slow because a large number of form fields are added through JavaScript.

/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1994-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 sdkPresentationNote.js

 - Folder Javascript sample created by Acrobat SDK.

***/

/*

 * sdkPresentationNote.js

 * Folder JavaScript sample Created by Acrobat SDK.

 *

 * This JavaScript code will add a menu item "Presentation Note..." under

 * the "Advanced" menu, and the associated menu function will create a temporary

 * note on top of the front file to show a schedule note.

 * After the user has entered a number of minutes before start of the presentation,

 * the note will display and the time shown in the note will be constantly updated

 * until the specified time period is end.

 * The user may click the menu item again to remove the note anytime.

 */

/*

 * Use of an object to emulate a unique namespace.

 *

 * Object literals act like global variables

 * defined within this particular namespace.

 */

if (typeof ACROSDK == "undefined")

	var ACROSDK = {};

	

// global variables

ACROSDK.targetDoc;

ACROSDK.timeStart;

ACROSDK.nWaitingMin;

ACROSDK.nRemainingMin;

ACROSDK.nIntervalSec = 0.5;

ACROSDK.nIndex;

ACROSDK.bQuit = true;

	

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

	 cName:"ACROSDK:JSSubMenu",

	 cUser: "Acrobat SDK JavaScript",

	 cParent: "Edit",

	 nPos: 0

	});

}

// Add a menu for PresentationNote()

app.addMenuItem({

 cName: "ACROSDK:PresentationNote",

	cUser: "Presentation Note...",

	cParent: "ACROSDK:JSSubMenu",

 cEnable: "event.rc = (event.target != null);",

 cExec: "PresentationNote(event.target);" });

/**

 * main entry

 */

function PresentationNote(doc)

{

	// check flag to toggle start / quit the presentation note.

	if(ACROSDK.bQuit == true)

		ACROSDK.bQuit = false;

	else {

		ACROSDK.bQuit = true;

		return 1;

	}

		

	// ask user to input a waiting time length

	ACROSDK.nWaitingMin = app.response({

		cQuestion: "A temporary note will be created " +

			" on top of the front file to show a schedule note." +

			" You can click the menu item again to remove the note anytime." +

			"\nEnter a number of minutes before start of the presentation:",

		cTitle: "Presentation Note",

		cDefault: "1",

	});

	

	if (ACROSDK.nWaitingMin == null){

		ACROSDK.bQuit = true;

		return 1;

	} else if (isNaN(ACROSDK.nWaitingMin)) {

		app.alert("Must enter a number.")

		ACROSDK.bQuit = true;

		return 1;

	}

 try {

 // get page box

 ACROSDK.targetDoc = this;

 var aRect = doc.getPageBox("Media",doc.pageNum);

 // create a text field

 var nHeight = 230;

 var nAdgeX = 100;

 var nAdgeY = 100;

 var x1 = aRect[0]+nAdgeX;

 var x2 = aRect[2]-nAdgeX;

 var y1 = aRect[1]-nAdgeY;

 var y2 = y1-nHeight;

 var ft = doc.addField("newNote", "text", doc.pageNum, [x1,y1,x2,y2]);

 ft.fillColor = ["RGB",1,0.855,1];;

 ft.strokeColor = ["RGB",0,0,1];

 ft.borderStyle = border.i;

 ft.textColor = color.blue;

 ft.richText = true;

 ft.multiline = true;

 ft.readonly = true;

 // set rich text of the field

 Strline1 = "Presentation\r";

 Strline2 = "will start\r";

 if (ACROSDK.nWaitingMin>1)

 Strline3 = "in " + (1 + Math.floor(ACROSDK.nWaitingMin));

 else

 Strline3 = "in " + 1;

 if (ACROSDK.nRemainingMin<=1)

 Strline3 = Strline3 + " minute\r";

 else

 Strline3 = Strline3 + " minutes\r";

 ft.richValue = ComposeRichText(3);

 // timer

 ACROSDK.timeStart = new Date();

 ACROSDK.nIndex = 0;

 ACROSDK.bQuit = false;

 noteTimer = app.setInterval("UpdateNote()", ACROSDK.nIntervalSec*1000);

 // set time out

 stopNoteTimer = app.setTimeOut("Clean();",ACROSDK.nWaitingMin*60000+30000);

 } catch (e) {

		console.println("Error in PresentationNote.");

 }

	return 0;

}

/**

 * internal function to compose the various rich text

 */

function ComposeRichText(nShow)

{

	try {

 var spans = new Array();

 spans[0] = new Object();

 spans[0].textColor = color.blue;

 spans[0].textSize = 40;

 spans[0].alignment = "center";

 spans[0].text = "";

 spans[1] = new Object();

 spans[1].textColor = color.blue;

 spans[1].textSize = 40;

 spans[1].alignment = "center";

 spans[1].text = "";

 spans[2] = new Object();

 spans[2].textColor = color.red;

 spans[2].textSize = 45;

 spans[2].alignment = "center";

 spans[2].text = "";

 if(nShow>0) spans[0].text = Strline1;

 if(nShow>1) spans[1].text = Strline2;

 if(nShow>2) spans[2].text = Strline3;

 } catch (e) {

		console.println("Error in ComposeRichText.");

 }

	return spans;

}

/**

 * internal function executed after every time interval

 */

function UpdateNote()

{

 try {

 // if Quit flag is on, just quit.

 if (ACROSDK.bQuit == true) {

 app.clearInterval(noteTimer);

 app.clearTimeOut(stopNoteTimer);

 if (ACROSDK.targetDoc != null) ACROSDK.targetDoc.removeField("newNote");

 return 1;

 }

 // get current time

 var timeNow = new Date();

 // get the time passed in seconds

 var nSpentSec = Math.floor((timeNow - ACROSDK.timeStart)/1000);

 // get the remaining time in minutes

 ACROSDK.nRemainingMin = 1 + Math.floor((ACROSDK.nWaitingMin*60 - nSpentSec)/60);

 // always increase the index

 ACROSDK.nIndex++;

 // show various text according to the remaining time and the index.

 var nCycle = 8;

 if (4 <= ACROSDK.nIndex%nCycle && ACROSDK.nIndex%nCycle < 6)

 ACROSDK.targetDoc.getField("newNote").hidden = false;

 else if (0 <= ACROSDK.nIndex%nCycle && ACROSDK.nIndex%nCycle < 4) {

 ACROSDK.targetDoc.getField("newNote").hidden = false;

 if (ACROSDK.nRemainingMin>0) {

 Strline3 = "in " + ACROSDK.nRemainingMin;

 if (ACROSDK.nRemainingMin<=1)

 Strline3 = Strline3 + " minute\r";

 else

 Strline3 = Strline3 + " minutes\r";

 }

 else

 Strline3 = "at any moment";

 ACROSDK.targetDoc.getField("newNote").richValue = ComposeRichText(ACROSDK.nIndex%nCycle);

 }

 else

 ACROSDK.targetDoc.getField("newNote").hidden = true;

 } catch (e) {

		console.println("Error in UpdateNote.");

 }

	return 0;

}

/**

 * internal function to end the timer and remove the note

 */

function Clean()

{

	try {

		app.clearInterval(noteTimer);

		app.clearTimeOut(stopNoteTimer);

		if (ACROSDK.targetDoc != null)

		 ACROSDK.targetDoc.removeField("newNote");

		

		ACROSDK.targetDoc.dirty = false;

		ACROSDK.bQuit = true;

	} catch (e) {

		console.println("Error in Clean.");

	}

}

sdkPresentationNote.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Presentation Note.

Note: This sample does not work with the Adobe Reader software.

The associated menu function will create a temporary note on top of the front file to show a schedule note.

After the user has entered a number of minutes before start of the presentation, the note will display and the
time shown in the note will be constantly updated until the specified time period ends.

The user may click the menu item again to remove the note anytime.

/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1994-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 SDKSilentPrint.js

 - Folder level Javascript code created by Adobe Acrobat SDK.

 ***/

 /*

 * The sample will add "Silent Print" under Acrobat File menu.

 * Click it to print the front document to the default printer without user interface.

 * It works for Reader, too.

 *

 * See Acrobat JavaScript reference and guide SDK documents for further information.

 */

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

		cName:"ACROSDK:JSSubMenu",

		cUser: "Acrobat SDK JavaScript",

		cParent: "Edit",

		nPos: 0

	});

}

/*

 * Add a menu item

 * you can execute this menu item from other programs such as IAC VB / VC code.

 */

app.addMenuItem({

	cName: "ACROSDK:SilentPrint",

	cUser: "Silent Print",

	cParent: "ACROSDK:JSSubMenu",

 cEnable: "event.rc = (event.target != null);",

 cExec: "JSSilentPrint(event.target)"

});

/**

 * trustedPrint function: Exercise the print function in the privileged context

 *

 * @param doc The Doc object of the target document

 * @param pparam The PrintParams object containing print settings

 */

trustedPrint = app.trustedFunction(

	function(doc, pparams) {

		app.beginPriv();

		doc.print(pparams);

		app.endPriv();

	}

);

/**

 * Main function: Print silently

 *

 * @param theDoc The event target of executing the menu item of this sample.

 */

function JSSilentPrint(theDoc)

{

	// get the printParams object of the default printer

	var pp = theDoc.getPrintParams();

	// print all pages.

	// You can print certain pages using code:

	// pp.firstPage = theDoc.pageNum1;

	// pp.lastPage = theDoc.pageNum2;

	// silent print,

	// you can also try .automatic instead of .silent

	pp.interactive = pp.constants.interactionLevel.silent;

	// set flag value which may include many options.

	// here we enable automatic paper tray selection

	var fv = pp.constants.flagValues;

	pp.flags |= fv.setPageSize;

	// Print to the default printer without invoking the print dialog

	trustedPrint(theDoc, pp);

}

sdkSilentPrint.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Silent Print.

Select the menu item to print the front document to the default printer without user interface.

The sample works for Reader too.

See Acrobat JavaScript reference and SDK documents for further reference.

/***

 ADOBE SYSTEMS INCORPORATED

 Copyright 1994-2008 Adobe Systems Incorporated

 All rights reserved.

 NOTICE: Adobe permits you to use, modify, and distribute this file

 in accordance with the terms of the Adobe license agreement

 accompanying it. If you have received this file from a source other

 than Adobe, then your use, modification, or distribution of it

 requires the prior written permission of Adobe.

 sdkJSTextExtract.js

 - Folder Javascript Created by Acrobat SDK.

***/

/*

 * This folder level JavaScript file demonstrates how to extract the text

 * in PDF page content and save it to a text file.

 *

 * It uses getPageNthWord to get the word one by one from the current page's text content,

 * then creates a data object and exports it to a file.

 */

if (typeof sdkMenuItem == "undefined")

	var sdkMenuItem = false;

	

if (!sdkMenuItem) {

	sdkMenuItem = true;

	app.addSubMenu({

		cName:"ACROSDK:JSSubMenu",

		cUser: "Acrobat SDK JavaScript",

		cParent: "Edit",

		nPos: 0

	});

}

// add a menu item to extract text.

app.addMenuItem({

	cName: "ACROSDK:ExtractText",

	cUser: "Extract Text ...",

	cParent: "ACROSDK:JSSubMenu",

	cEnable: "event.rc = (event.target != null);",

	cExec: "ExtractText();"

});

/**

 *	function to extract the text content of the current page and save to a file.

 */

function ExtractText()

{

	try {

		var p = this.pageNum;

		var n = this.getPageNumWords(p);

		app.alert("Number of words in the page: " + n);

		var str = "";

		for(var i=0;i<n;i++) {

			var wd = this.getPageNthWord(p, i, false);

			if(wd != "") str = str + wd;

		}

		// save the string into a data object

		this.createDataObject("dobj1.txt",str);

		// pop up a file selection box to export the data

		this.exportDataObject("dobj1.txt");

		

		// clean up

		this.removeDataObject("dobj1.txt");

	} catch (e) {

		app.alert(e)

	};

}

sdkJSTextExtract.js

Acrobat SDK Folder-Level JavaScript Sample

This JavaScript adds a menu item under Edit->Acrobat SDK JavaScript: Extract Text.

This folder-level JavaScript file demonstrates how to extract the text in PDF page content and save it to a text
file.

It uses getPageNthWord to get the word one-by-one from the current page’s text content, then creates a data
object and exports it to a file.

Call Media ActionScript

		Description: This sample demonstrates the ability to invoke ActionScript methods embedded in the Rich Multimedia Annotation from Acrobat JavaScript.

ActionScript methods to be exposed to the ExternalInterface of the container (Acrobat Flash Framework) register themselves as callable from the container via the ExternalInterface.addCallback method.

Click on the Play/Pause/Reset buttons and observe messages displayed by the ActionScript callback methods invoked by the button actions JavaScript.

		btnPause:

		btnPlay:

		btnReset:

		NestTwoLog: []

		NestOneLog: []

		PropOneLog: []

		PropTwoLog: []

		BtnViewSource:

		BtnClear:

		TxtTitle: Event State Demo

		TxtExplain: This sample demonstrates two ways for event listeners to have local persistent state.

The colored boxes at the top of each column below are ScreenAnnots with event listeners that log events to the list boxes below. Click each one to start logging, then move the mouse around among them and click some more to watch the events being logged.

		TxtExplain2: The two ScreenAnnots on the left use local variables and nested scope, and the two on the right use properties in the event listener object. Each technique is useful in different situations. Click the View Source button to see how each is implemented.

For simplicity, this sample uses ScreenAnnots with no actual multimedia playback, only event listeners. The same techniques work with media player event listeners and other JavaScript objects.

		BtnPlay:

		BtnViewSource:

		TxtDescription: This sample demonstrates the use of JavaScript to cue up two media players and then start them playing simultaneously. When you click the Play button, JavaScript code opens each player with autoPlay turned off and installs an afterReady event listener in each player. When each player has reported afterReady, the code calls their play() methods. This way, the players are all ready to start and begin playing together. You can also click either movie to play it by itself

		TxtDescription2: The video clips are two versions of a Super Bowl animation by Resn8. The animation runs for 20 seconds, but the rough cut is missing the last second of footage, and the finished version runs a second too long. So Acrobat's duration feature is used to play each movie for exactly 20 seconds. This results in a freeze frame at the end of the rough cut.

The finished version on the right features effects added with Adobe After Effects.

		ConvertDates_Heading: Run Media Players

Script Events

		Description: This PDF demonstrates JavaScript commands sent from a Flash movie. Click on the movie to the right to begin.

In this sample, we simply log the JavaScript commands here (as command: param). You can write custom JavaScript code to interpret movie commands as you wish.

		TxtEventLog: Public domain, courtesy of the Prelinger Archives: www.archive.org/movies

Narrator: Here is Bob Grey of Indianapolis. All set to prove that the hand is quicker than the eye.

		BtnViewSource:





J. S. Bach

Sheet Music from www.mfiles.co.uk

Two-part Invention, no. 13



           

              

4

             
             



7

            

         
        

10



                         

                 
      

12

             

         
                             

© Jim Paterson www.mfiles.co.uk

14

                              


       
         

  

16

                               
       

             

18

                            
                            

20

                                
                 

22

 

                          
                    

24

                             



             


© Jim Patersonwww.mfiles.co.uk

2

		BtnCompile:

		BtnStop:

		BtnPlay:

		TxtAboutBkgd:

		TxtHowTo: Click the Play button to play the music, or click anywhere in the sheet music to start from there.

		BtnCloseAbout:

		TxtAboutText: This PDF was generated by the Sibelius notation program with Adobe Acrobat.

The music is a QuickTime file which contains a MIDI track also generated by Sibelius. I wrote a C++ program using the QuickTime API to add a marker at each measure in the QuickTime file, and a script event at each measure and beat within a measure. When the music is playing, the script events trigger JavaScript code in the PDF that outlines the current measure and beat and turns the page when needed.

The timing of the markers and script events is not perfect. In particular, they fall out of sync with the fermata (slowed down tempo) at the end. This could be fixed with a manual adjustment to the QuickTime file. The positioning of the blue boxes around the measures is not perfect either. I basically laid them out by hand, but to avoid drawing every single box individually, there is a layout array in the JavaScript code with the X and Y coordinates, and a Compile button that generates all of the boxes from the layout data. The Compile button is normally hidden, but you can make it visible and click it to recompile the boxes. These boxes are actually Button fields, and when you click on one, its JavaScript code begins playback at the corresponding QuickTime marker.

You may also encounter a rather unpleasant QuickTime bug: an occasional loud burst of noise at the beginning of playback. Ouch!

Despite the imperfections and manual work involved, this PDF is a good example of what you can do with Acrobat multimedia and a little determination. A more ideal solution would be for a program like Sibelius to generate the JavaScript and QuickTime file at the same time that it generates the PDF.

For more information, click the View Source button to see the JavaScript source code (Adobe Acrobat required).

Music by Johann Sebastian Bach,
Transcription by Jim Paterson using Sibelius notation software
PDF sheet music player by Michael Geary
Visit www.mfiles.co.uk for playable sheet music, MIDI, and MP3 files

		TxtAboutHeading: How this demo works

		BtnAbout:

		BtnViewSource:

		Bar0:

		Bar1:

		Measure0:

		Measure1:

		Measure2:

		Measure3:

		Measure4:

		Measure5:

		Measure6:

		Measure7:

		Measure8:

		Measure9:

		Measure10:

		Measure11:

		Measure12:

		Measure13:

		Measure14:

		Measure15:

		Measure16:

		Measure17:

		Measure18:

		Measure19:

		Measure20:

		Measure21:

		Measure22:

		Measure23:

		Measure24:

		Text3: Play Sheet Music

